
SANDIA REPORT
SAND2018-2095
Unlimited Release
Printed February 2018

PIMS: Memristor-based
Processing-in-Memory-and-Storage

Jeanine Cook

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2018-2095
Unlimited Release

Printed February 2018

PIMS: Memristor-based
Processing-in-Memory-and-Storage

Jeanine Cook
Scalable Architectures

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-9999
jeacook@sandia.gov

3

Abstract

Continued progress in computing has augmented the quest for higher performance with a new quest
for higher energy efficiency. This has led to the re-emergence of Processing-In-Memory (PIM) ar-
chitectures that offer higher density and performance with some boost in energy efficiency. Past
PIM work either integrated a standard CPU with a conventional DRAM to improve the CPU-
memory link, or used a bit-level processor with Single Instruction Multiple Data (SIMD) control,
but neither matched the energy consumption of the memory to the computation. We originally
proposed to develop a new architecture derived from PIM that more effectively addressed energy
efficiency for high performance scientific, data analytics, and neuromorphic applications. We also
originally planned to implement a von Neumann architecture with arithmetic/logic units (ALUs)
that matched the power consumption of an advanced storage array to maximize energy efficiency.
Implementing this architecture in storage was our original idea, since by augmenting storage (in-
stead of memory), the system could address both in-memory computation and applications that
accessed larger data sets directly from storage, hence Processing-in-Memory-and-Storage (PIMS).
However, as our research matured, we discovered several things that changed our original direc-
tion, the most important being that a PIM that implements a standard von Neumann-type archi-
tecture results in significant energy efficiency improvement, but only about a O(10) performance
improvement. In addition to this, the emergence of new memory technologies moved us to propos-
ing a non-von Neumann architecture, called Superstrider, implemented not in storage, but in a
new DRAM technology called High Bandwidth Memory (HBM). HBM is a stacked DRAM tech-
nology that includes a logic layer where an architecture such as Superstrider could potentially be
implemented.

4

Contents

1 Project History 9

1.0.1 Project Legacy . 9

1.0.2 Project Metrics . 10

2 Impact 11

3 Superstrider 13

4 RRNS for Error Correction 29

5 Memory Addressing for an RRNS-based Architecture 55

Appendix

A Early and Unpublished RRNS and Superstrider Work 71

5

List of Figures

6

List of Tables

7

8

Chapter 1

Project History

As stated previously, the project began by investigating a traditional von Neumann architecture in
memory. Initial experiments done on a functional simulator showed that the performance improve-
ment was approximately 10x for a small suite of benchmarks. Additionally, through measurement
on some of our testbed systems using various applications, we discovered that bandwidth limi-
tations to memory are stressed primarily by computations that involve sparse matrix/vector data.
This drove us to re-think the architecture and eventually arrive at the Superstrider architecture,
which is described in Chapter 3.

Although Dennard Scaling has driven efficiency and performance improvements over the past
several decades, like Moore’s Law, the end is in sight. The proposed devices to replace traditional
CMOS transistors, such as tunneling FETS and ferroelectric transistors, will enable a reduction
in Vdd to the point where reliability will be negatively impacted and error correction is necessary.
Therefore, we initiated some research as part of this project on error correction algorithms. After
reviewing several error correction algorithms, we chose to pursue an architecture that used Re-
dundant Residual Number System representation for integer arithmetic operations. This work is
presented in Chapter 4).

Implementing an architecture based on RRNS has implications on the memory subsystem. In
a traditional architecture, memory addresses are binary. However, in an RRNS architecture, these
addresses are generated in RRNS, causing a slowdown in overall performance of 2-3x. We investi-
gated several methods for memory addressing in an RRNS architecture that showed improvements
in performance. These are presented in Chapter 5.

Appendix A contains much of our older published work on our initial PIMS and Superstrider
architectures, in addition to documents on work that was done on various aspects of the RRNS-
based architecture.

1.0.1 Project Legacy

Through our work in integrating the Superstrider architecture and HBM, several vendors showed
interest in collaboration on this, including HPE, AMD, Micron, and Samsung. Upon vendor re-
quest, we are trying to identify large-scale scientific applications that are important to the DOE
complex that might benefit from the Superstrider/HBM architecture.

9

This project did launch two primary new research directions. The first is at SNL, in low-energy
(reversible) computing. This is now being funded by the ASC Beyond Moore Computing effort.
The second is at Georgia Tech. We initiated an ASC-funded Academic Alliance for 3 years to
continue work on Superstrider and to leverage GA Tech’s CRNCH center that aims to acquire
non-traditional computing systems that may eventually be productive in the HPC environment.
Superstrider performance will be compared to some of these systems and GA Tech will port im-
portant proxy apps to these systems to aid in understanding the benefit to SNL mission applications.
Finally, this ASC funding will enable the development of a Superstrider prototype using an HBM
integrated FPGA board for testing performance of relevant SNL applications.

1.0.2 Project Metrics

Through this project, we produced the following products (in addition to papers contained in the
report):

• 1 patent filed for PIMS, another pending (waiting on legal) for SuperStrider

• SuperStrider simulator open source software release

• 8 peer-reviewed conference papers (1 in addition to papers in the report)

– Agarwal, R.L. Schiek, M.J. Marinella. Compensating for Parasitic Voltage Drops in
Resistive Memory Arrays, 2017 International Memory Workshop

• 7 IEEE Computer Invited Articles (listed below)

1. Debenedictis, Erik, and R. Stanley Williams. Help Wanted: A Modern-Day Turing.
Computer 49.10 (2016) 76-79

2. DeBenedictis,Erik P. Computational Complexity and New Computing Approaches.
Computer 49.12(2016):76-79

3. DeBenedictis,Erik P. It’s Time to Redefine Moore’s Law Again. Computer 50.2(2017):72-
75

4. DeBenedictis,Erik P. Computer Architecture’s Changing Role in Rebooting Comput-
ing. Computer 50.4(2017):96-99

5. DeBenedictis,Erik P., Jesse K.Mee, and Michael P.Frank. The Opportunities and Con-
troversies of Reversible Computing. Computer 50.6 (2017): 76-80

6. DeBenedictis,Erik P.,et al. Sustaining Moore?s Law with 3D Chips. Computer 50.8(2017):69-
73

7. DeBenedictis, Erik P.. Computer Design Starts Over. Computer 50.8 (2017): 14-17

• Numerous presentations in various venues

10

Chapter 2

Impact

This LDRD project has been instrumental in defining a third path in the ASC Beyond Moore Com-
puting effort, which is called non-traditional HPC architectures, that really targets 3D integration
of compute and memory. This is now funded work under the ASC Beyond Moore Computing
project. In addition, this project established an Academic Alliance with Georgia Tech, which pro-
vides funds to continue research in PIMS and other non-traditional HPC architectures. A summary
of the impacts of this work is:

1. We have formed active collaborations with several industrial researchers from Micron, HPE,
AMD, and Samsung on implementing Superstrider and similar architectures into an HBM
technology.

2. We developed and open-sourced a memory-accurate, functional Superstrider simulator that
can be used to further develop broader capability in this non-von Neumann architecture. This
is being leveraged in academia by GA Tech and in industry by HPE.

3. We quantitatively showed that Superstrider can potentially attain approximately O(1000)
performance improvement over the conventionally-implemented algorithm for sparse matrix
accumulation. Also showed that performance scales up with tighter coupling and a wider
HBM interface (i.e., Superstrider can push the existing limits of HBM bandwidth).

4. We have published 8 refereed papers and have given numerous invited talks at venues in-
cluding USC ISI, NNSA, and Sandia’s Workshop Fault-Tolerant Spaceborne Computing
Employing New Technologies.

5. We secured sufficient follow-on funding to continue this work.

11

12

Chapter 3

Superstrider

The first paper, The Superstrider Architecture: Integrating Logic and Memory towards non-von
Neumann Computing, was published in the IEEE International Conference on Rebooting Comput-
ing, 2017. This represents our final work and results from this project for the Superstrider archi-
tecture. The paper titled, Superstrider Associatve Array Architecture, was a Graph Challenge entry
and was published in the proceedings of the 2017 IEEE High Performance Extreme Computing
conference.

13

The Superstrider Architecture: Integrating Logic and
Memory towards non-von Neumann Computing

Sriseshan Srikanth and Thomas M. Conte
Georgia Institute of Technology

Atlanta, Georgia
Email: seshan@gatech.edu; conte@gatech.edu

Erik P. DeBenedictis and Jeanine Cook
Center for Computing Research

Sandia National Laboratories
Albuquerque, NM

Email: epdeben@sandia.gov; jeacook@sandia,gov

Abstract—We present a new non-von Neumann architecture,
termed “Superstrider,” predicated on no more than current
projected improvements in semiconductor components and 3D
manufacturing technologies, which should offer orders of
magnitude advances in both energy efficiency and performance
for many high-utility problem classes. The architecture is
described, which is based on computing on row-wide memory
words to accelerate sparse matrix algebraic operations that are
normally implemented as scalar operations. A cycle-accurate
simulation demonstrates potential performance improvements on
existing High Bandwidth Memory (HBM) on the order of 50× that
increases to 1000× or more when implemented using a fully
integrated 3D technology and compared to a simple baseline.
Further refinement may change these numbers, but the magnitude
of the opportunity suggests further work.

Keywords—Moore’s law; superstrider; processor-in-memory;
component; von Neumann; sparse matrix; associative array

I. INTRODUCTION
Realization of Moore’s law created a world-wide

information revolution and economic expansion due to the
exponential growth in the number of components per integrated
structure [1] (chip) and the computing applications it enabled.
Flatlining of line width on chips is evidence that Moore’s law is
at least changing. Moore’s article included a projection of an
exponentially increasing number of devices per 2D chip over
time, but there are now numerous examples of
(memory/storage) chips that are scaling in the third dimension,
making it no longer necessary for line width to scale to maintain
the vision originally proposed by Moore.

A traditional von Neumann architecture implements the
stored-program concept, with both data and instructions being
stored in a common memory and moved to the compute unit
over a bus. Although the von Neumann architecture and
Moore’s law are largely responsible for the performance of
today’s computers, the von Neumann architecture has
negatively impacted speed and energy efficiency, particularly
with respect to data movement, to a point that renders it
unsustainable. The cost of moving data between caches and
main memory accounts for a large portion of total energy in

several application domains and is cited as the key challenge in
future exascale systems [2].

Although memory and storage are now implemented in 3D
structures, they are currently being used only in computers of
the typical von Neumann architecture. So even if scaling in the
third dimension can extend Moore’s law, unless we mitigate the
von Neumann bottleneck that is created by the bus between
processor and memory, we will not see computational efficiency
(performance and energy efficiency) grow at the rates that drove
economic growth over the past several decades.

In this work, we make use of additional design flexibility
brought out by the shift from 2D to 3D [3] and the associated
possibility of collocating logic and memory. Some very
effective algorithms, such as merging (a type of sorting),
become inefficient at large scale simply due to the large amount
of data movement between logic and memory chips. Using a
merge network as an example, Fig. 1 shows how 3D integration
makes the needed interconnection pathways possible and
efficient.

Fig. 1: For highest performance, functions are defined as schematics and

laid out to reduce communications latency and energy, such as the bitonic merge
network on the top. (lower) A 3D physical module with tight coupling between
logic and memory allows short connections instead of conversion of signals to
high energy levels and off-chip delays. An external von Neumann processor can
be interfaced with one of the layers to establish compatibility with existing
software. The red curve shows a representative data movement step in merging,
which has no off-chip links.

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525.

14

Superstrider belongs to a special class of accelerators, which,
in conjunction with a traditional processor, alleviates the von
Neumann bottleneck by collocating some computational
functions and their associated memory access, enabling
increased performance and energy efficiency over a broad class
of applications (e.g., data analytics, graph processing,
scientific/linear algebra). Superstrider itself is not a von
Neumann architecture, as it combines computation and memory
into a single component that is directed by a control unit and can
be integrated with a standard processor.

II. THE SUPERSTRIDER ARCHITECTURE
The Superstrider architecture performs a limited set of

operations using conjoined logic and memory, enabling it to
efficiently execute several algorithms related to sparse matrices,
which are the primary computational kernels in several scientific
applications. Its organization is non-von Neumann in that it
computes very close to memory rows with no processor in the
traditional sense. This eliminates the need to move data (referred
to as records or key-value pairs) from the processor to memory
over a bus, thereby eliminating the von Neumann bottleneck.

A. Overview of Superstrider Operation
The operational primitive of Superstrider is to perform in-

situ sorting (Section IIB) and compression (combining values of
records with identical keys, discussed in Section IIF) at the
granularity of a memory row. To achieve this, we organize
memory into a tree where the nodes are entire physical rows of
the memory, where each row comprises records in sorted order
and a pivot key that distinguishes subtrees. By setting the
fundamental unit of data to be a memory row, we achieve high
bandwidth utilization and eliminate bank conflicts.

Superstrider currently implements a fixed set of fundamental
algorithms to support sparse matrix computation. In this paper,
we focus specifically on the addition or accumulation phase of
sparse matrix multiplication. In dense multiplication of matrices,
C = AB, each record cij of C is the vector dot product of a row
of A and a column of B, such that cij = ¦k aikbkj. If we define cij

(k)
= aikbkj, many cij

(k) do not exist when A and B are sparse. When
the sparsity pattern is too irregular to exploit, this can be treated
as a data processing problem on a series of records of the form
{ i, j, cij

(k) }. Superstrider takes vectors of records in the form

{ i, j, cij
(k) }, sorts them into a standard form, then sums all the

values cij
(k) for a given (i, j). This is precisely the accumulation

phase of sparse matrix multiply.

Therefore, in the context of such an accumulation phase, an
addition operation is used to compress records with identical
keys. However, Superstrider implementations of other data
processing problems may employ a different collision
function [4] to achieve compression. In this paper, we limit the
collision function to addition.

Fig. 2 depicts an overview of Superstrider’s architecture and
operation. Our Superstrider implementation involves several
components:

- A memory array where the rows organized as a tree; where
each row stores at most K records.

- An “open row” buffer and an accumulator of size K each, to
buffer input and intermediate processed data.

- A merge network to sort records in the open row buffer and
the accumulator taken together. When laid out in a different
manner and used in reverse, such a network is used to
eliminate empty records that manifest as a result of
compression.

- A pool of function units consisting of comparators and adders
in order to aid with compression.

 We dedicate the remainder of this section to explain each of
these in further detail.

B. The Merge Operation and Sorted Invariant
Superstrider’s sort/merge capability is key to its efficient

operation. Shown at the top of Fig. 1, it is based on a bitonic
merge network that was first proposed decades ago for use in
specialized chips [5]. This network takes two sequences of 8
numbers, each sequence in sorted order, i. e. a bitonic sequence,
as input on the left, which flow through the network and are
output as single sequence of 16 numbers in sorted order at the
right. The vertical lines are comparators, and when two numbers
reach the ends of a vertical line, they are compared and swapped
so that the larger number is on top. A four-stage network is
shown in Fig. 1, where each stage of the network outputs sorted
sequences of decreasing size (e.g., bitonic sequences of 8 are
merged in the first stage, the second stage merges sequences of
4, the 3rd stage merges bitonic sequences of 2, etc.).

Fig. 2: Superstrider architecture and functionality. In a typical operation, such as Addvec (Section IIE), pre-sorted records in the open row buffer and the
accumulator are merged using the merge network (Section IIB) and records with identical keys are summed (Section IIF) using the function unit pool. The
result is a vector of sorted records, each of which has a unique key. These are then written into the binary tree layout of memory, based on pivot values.

15

We are able to realize efficient sorting by using only the
merge capability of a bitonic network because we enforce the
invariant the records in memory rows and the accumulator are
always in sorted order. Merging requires just log2(n) stages,
where n is the number of records being merged. Note that
realizing such an efficient sorting paradigm not only aids in
insertion/lookup of records into a Superstrider tree, but also aids
faster compression.

C. Control Logic
The control logic in Superstrider was designed to

complement its other unique features, but the control logic will
be described only briefly due to space limitations. Superstrider
is a state machine overall with one state transition per memory
access, with the control logic holding the main part of the state.
The control logic receives signals from the data path containing
information like the number of records whose key is less than
the pivot or whether a subtree exists or not. The control logic
produces simple commands like whether to swap the
accumulator and open row buffer or to leave them as they are,
compute the address or the next row to be accessed, and which
function to “call” on the next row.

The most important high-level Superstrider functions
include Addvec (add vector of records to the tree) and
Normalize. These operate on a memory row and both use the
merge network and the pool of function units to accomplish their
tasks. Before describing these functions, we first describe the
Superstrider data layout and control fields.

D. Memory/Data Layout
A Superstrider row may span several physical memory

banks, but for simplicity, we use a single bank to illustrate the
data layout. Fig. 2 shows rows of K = 5 records from a
Superstrider bank. The fields shown to the left of the red and
green records are control fields that are described in Table 1. The
contents of each record are in the format “(key) = value”, so a
term of cij

(k) appears with the notation (n(i, j)) = cij
(k), where

n(i, j) is an invertible function mapping two integers to one.
While we perform compression (Section IIF) to remove
duplicate keys from the same row before adding them to the tree,
we explain in Section IIE that it is possible for the same key to
appear in different rows. At a later stage, we remove such
duplicate keys via normalization (Section IIH).

A bank has an open row, or a row whose contents have been
transferred to the open row buffer shown in blue at the bottom
of the bank. The control fields to the left of the buffer are likely
to be a few dozen bits, as shown in Table 1, with the

Table 1: Control fields
Addr:(size) The Superstrider row number (Addr) and computed

size of the subtree rooted at this row.
Pivot The pivot value for sorting; is set to p = K/2.

Elements of the left/right subtree are less
than/greater than or equal to this value.

L subtree(size) The Superstrider row number (Addr) of the left
subtree and size of the left subtree.

R subtree(size) The Superstrider row number (Addr) of the right
subtree and size of the right subtree.

Fig. 3: Addition of three records to an initially empty Superstrider

Addr. Pivot L subtree R subtree

DRAM Rows

Addr. Pivot L subtree R subtree

(2)=0.02 (14)=0.09 (17)=0.49 (20)=0.27 (22)=0.45

DRAM Rows

(2)=0.02 (14)=0.09 (17)=0.49 (20)=0.27 (22)=0.45

0:(5) 17 0(0) 0(0)

Addr. Pivot L subtree R subtree

(17)=0.49 (18)=0.63 (20)=0.88 (22)=0.45 (27)=0.20

DRAM Rows

(13)=0.50 (13)=0.04 (18)=0.63 (20)=0.61 (27)=0.20

1:(5) 20 0(0) 0(0)

(2)=0.02 (13)=0.54 (14)=0.09 0:(8) 17 0(0) 1(5)

Addr. Pivot L subtree R subtree

(17)=0.49 (18)=0.63 (20)=0.88 (22)=0.45 (27)=0.20

DRAM Rows

(7)=0.68 (13)=0.07 (18)=0.82 (26)=0.25 (28)=0.99

1:(5) 20 0(0) 0(0)

(2)=0.02 (7)=0.68 (13)=0.61 (14)=0.09 2:(4) 13 0(0) 0(0)

(18)=0.82 (26)=0.25 (28)=0.99 0:(12) 17 2(4) 1(5)

b Initial memory state: empty

cAddvec function call
 (a) Input to Accumulator
 (b) Copy from Accumulator to memory
 (c) Pivot = (17)

dAddvec function call
 (a) Input to Accumulator
 (b) Merge memory row 0 with Accumulator
 (2)(13)(13)(14)(17)(18)(20)(20)(22)(27)
 (c) Compression function call
 (2)(13)(14)(17)(18)(20)(22)(27)
 (i) Sends green list to right child (>= root)
 (ii) Adjust size of root (to 8)
 (d) Pivot (child) = (20)
 eAddvec function call
 (a) Input to Accumulator
 (b) Merge memory row 0 with Accumulator
 (2)(7)(13)(13)(14)(18)(26)(28)
 (c) Compression function call
 (2)(7)(13)(14)(18)(26)(28)
 (i) Sends red list to left child (< root)
 (ii) Adjust size of root (to 12)
 (c) Pivot (child) = (13)

NOTE: (18) does not match ground truth because it has not yet been merged, so is colored yellow.

Accumulator

Accumulator

Accumulator

Accumulator

16

remainder of the row divided into K data records. The magnitude
of K will vary depending on both the row length and size of user-
defined records, but a representative range could be from
K=200-2,000. This layout may look similar to a hashed array
tree with K-element leaves, however, it is a binary tree with K-
elements nodes because of its pivot based organization.

As mentioned previously, Superstrider’s primary primitive
is merge, with data organized optimally in memory via a tree-
based sort. Each row is considered a node in the tree, with the
root of Superstrider’s overall tree at address zero. We use a pivot
in each row that is slightly different than that found in the
algorithmic literature for sorting. All keys in the left subtree are
less than the pivot; all keys in the right subtree are greater than
or equal to the pivot. However, each row has records whose keys
can be less than, equal to, or greater than the pivot. In Fig. 2,
records in the row whose key is less than the pivot are colored
red, the others green, and the records are always sorted.

E. Addvec
Addvec adds a vector with up to K records to the tree present

in memory. All the records are added in parallel.

Fig. 3 shows how record vectors of size K = 5 are added to
an empty memory using a tree-based algorithm. Records whose
key is less than the pivot are colored red; all others are shown in
green.

The memory is initially empty, which is step 0. In step 1,
Addvec copies the input from the accumulator to memory as the
root of the tree (i.e., 0:(5)) and sets the pivot to the key of the
middle record, which in the example is 17. Pivots do not change
once set.

Step 2 shows a new sorted vector of records (length K) in the
accumulator being added to the root of the tree in memory. The
records in the accumulator and memory are merged, which
results in records with identical keys ((13) and (20) both occur
twice in the merged record). This merged vector of records (of
length 2K) is then compressed, which adds the values in records
with identical keys (e.g., records (13)=0.50 and (13)=0.04
become a single record (13)=0.54). So after compression, we
have three records that are less than the pivot value (shown in
red, (2), (13), (14)) and five that are greater than or equal to the
pivot value (shown in green, (17), (18), (20), (22), (27)). At this
point, the algorithm determines which of these vectors to store
in memory and which to keep in the open row buffer, and on
which child to recursively call Addvec. To maintain consistency
of the tree, the Addvec algorithm recursively operates on vectors
that are either all less than or all greater than or equal to the pivot
value (i.e., all red or all green). Using the pivot (17), a right
subtree child is created and written to memory, leaving the keys
that are less than 17 in the root (open row buffer) and those
greater than or equal to 17 in the right subtree. The size of the
root is changed (from 5 to 8) to reflect the new number of
records tracked from the root and the child pivot is set to the key
of the middle (third) record, or 20.

Addvec is recursively called on the left or right child in the
open row buffer, depending upon the relative number of red and
green records. This iteration repeats until the proper subtree does
not exist, i. e. a leaf of the tree has been reached and the iteration

attempts to move below the leaf. At this point, a new leaf node
is created with the accumulator value and Addvec completes.

F. Compression
Compression occurs when the same key appears in several

records. The merge at the beginning of each step results in
equivalent keys being adjacent in the row of records. The pool
of function units identifies these adjacent records and with the
help of the backward merge network, replaces them with a single
record with the common key and a combined value. This
shortens the list by some number of records. For accumulation
in our sparse vector multiplication example, values are
combined by floating point addition, but other applications may
use a different collision function.

The simulator that constructed the diagram in Fig. 3 also
computes a ground truth representation of the correct C matrix.
Cells are colored yellow if their value does not match the ground
truth. At some point later in algorithm processing
(normalization), these two records pictured in yellow will appear
in the same row and will be compressed.

G. Multiset, Set, and Standard Forms.
The sort algorithm implemented in memory allows the tree

to have an unusual structure, leading to multiple forms. A row
may contain records whose key is less than the pivot, but these
records can also be in the left subtree. Likewise, a row may
contain records whose key is greater than or equal to the pivot,
but such records can also be in the right subtree. For multiset
form in general, a key can be found in a leaf node and/or in any
ancestor node up to the root, or in any combination of these
nodes. This property is essential for computational efficiency.

During normalization, all duplicate keys are removed from
the tree, converting it from multiset to set form. Allowing only
unique keys in the set (i. e., no duplicates) abides by the strict
definition of set and requires that all keys in the left/right subtree
are less than/greater than or equal to all keys in the row above
(parent node) rather than just the pivot.

We define standard form as the set form with the additional
constraint that all rows except the last have exactly K records.
Standard form is unique.

H. Normalize
Normalization compacts and reorganizes multiset trees with

incompletely compressed (yellow) cells and rows of irregular
length to the set or standard form. It is recursively called to
adjust the division of records between each of its subtrees and
the open row, with the division chosen to make the number of
records in the left subtree a multiple of K and to fill the memory
row completely if there are enough records to do so.
Normalization also ensures that all the records in the left/right
subtree are less than/greater-than-or-equal to any record in the
tree node.

This shifting of records to/from the open row from/to a
subtree uses the Normalize function (as well as min and max
functions) and the Addvec function, respectively. Addvec shifts
records from a row to a subtree. The records are removed from
the open row starting at the pivot through the rightmost record
and are sent to the subtree, with the pivot being the leftmost
record in the new subtree. Normalize moves records from a

17

subtree to the open memory row, using either the min(n) or
max(n) functions. These functions are called to find and remove
the n smallest or n largest keys in a subtree and return their
records. The records are then added to the open row. Obviously,
this activity cannot remove more records from a subtree than
exist and cannot fill the row beyond its K-record capacity.

If the input tree is in set form, the output of Normalize will
be in standard form. All left subtrees will have a multiple of K
records, and hence will have rows filled to exactly K records.
Since every subtree except the rightmost leaf node of the entire
tree is a left subtree of some node, only this rightmost node is
not guaranteed to have K records. This corresponds to standard
form. If the input tree is in multiset form, the output of
Normalize will be in set form. The Normalize function makes
use of an estimate of the size of subtrees to compute how to
divide the records. However, the number of records in a subtree
will change during normalization when records merge. Even
though merging may leave rows incompletely filled, Normalize
still puts the tree in set form with no duplicates.

III. EXPERIMENTAL FRAMEWORK
We implemented a memory cycle-accurate simulator for the

Superstrider architecture and compared its performance to a von
Neumann architecture baseline. We call the simulator memory
cycle-accurate because it faithfully preserves cycle timing of
memory. However, HBM has a protocol for moving data from
the physical memory to the controller. We model this protocol
using published timing figures [6], but we extrapolate the
protocol to hypothetical HBM successors with wider interfaces
where the timing is speculative. At the widest possible interface
width, the timing simulated represents a fully integrated logic in
memory model.

The simulator accurately counts the number of cycles for the
merge network and the function unit pool, however, we do not
consider wire delay in these networks. We find that the
incremental benefits (even with optimistic performance
projections obtained by ignoring wire delays) due to relatively
larger networks are rather modest, thereby rendering their
complexity and overheads unjustified.

A. Front End
A front end generates sorted records to feed the Superstrider

HBM+logic structure as well as to measure performance of a
von Neumann baseline. The baseline implements no reordering
optimizations on the sparse input matrices and does not simulate
caches because there is negligible spatial locality in sparse
matrix inputs. The baseline traverses the HBM banks as
rectilinear memory, i.e., without the binary tree format of the
Superstrider algorithm. We use University of Florida
matrices [7] as well as pseudo-randomly generated sparse
matrices as input to the Superstrider simulator. The latter is
especially useful in performance analysis because they enable
arbitrarily large inputs, and we use these to demonstrate the
benefits of the Superstrider paradigm in Section IV, with the
random sparse matrix multiplication input generating 27 million
non-zero records as the Superstrider input stream, where the key
of each record is a pseudo-random number between 0 and 27
million.

Fig. 4: Experimental framework. Baseline is an HBM stack with controller (8
channels) but no cache anywhere. For compatibility, Superstrider is
implemented as 8 instances, one per HBM channel, with a sweep performed
over additional parameters.

B. Memory Model
To make reasonable comparisons with a conventional

processor, the simulator illustrated in Fig. 4 models 8 identical
instances of Superstrider, each connected to an HBM channel.
Each HBM channel, simulated with 1 rank, comprises 8 16,384-
bit wide physical DRAM banks.

Each simulated Superstrider record contains an integer key
and a single precision floating point value, or 8 bytes per record.
To achieve maximum algorithmic efficiency, each Superstrider
row is set as wide as possible, i. e., K = 2,048 records or 128K
bits wide, which is the total row width offered by combining all
8 banks together. A Superstrider row is strided across its 8 banks
to avoid bank conflicts, thereby realizing high channel
bandwidth utilization.

The physical configuration of a bank as well as the timing
parameters that govern row access time are obtained from the
High Bandwidth Memory (HBM) JEDEC standard [6].
However, for simplicity, we ignore the overheads due to DRAM
refresh and read-to-write delays. We assume that the HBM is
clocked at one-fourth the frequency of that of logic.

C. Simulated Parameters
In the simulator, we vary several parameters to explore the

design space of the Superstrider architecture. We perform
experiments to understand the sensitivity to performance of
varying the following characteristics: (1) function unit pool
configuration, (2) merge network size, (3) “tightness’’ of the
logic/memory integration (interface width), and (4) resource
pipelining.

1) Function Unit Pool Configuration
A pool of function units are made available to facilitate

compression. These can be global or shared across the HBM
channels (Superstrider instances), or can be
distributed/partitioned or private per HBM channel depending
upon the target design budget allocated.

We evaluate three scheduling schemes:

Partitioned/N. The pool of N function units is statically
partitioned and distributed across all channels equally.

18

FCFS Greedy/N. The pool of N function units is globally
shared across channels and allocation/scheduling is done on a
first-come first-serve basis. It is greedy in that the scheduler
allocates any available units to an incoming compress request,
even if a sufficient number of them is not available to perform
the addition in a single time step.

Infinite#. We also evaluate an upper limit policy where there
are an infinite number of function units available, guaranteeing
constant (single cycle) access time.

2) Merge Network Size
A merge network is responsible for merging the open row

buffer and the accumulator and for deleting empty records after
compression. We assume that each channel has a merge network
associated with it close to the open row buffer and accumulator
to minimize wire length. As explained in Section II, this network
is a log2n-level bitonic structure, with each level taking multiple
pipelined cycles depending upon the number of comparators
available. For simplicity, we assume that there are enough ports
to the network to feed all its comparators simultaneously.

Recall that a Superstrider row spans 8 banks, each of which
is 16,384 bits wide. This means that the open row buffer as well
as the accumulator can house 2,048 records each. We simulate
three merge network sizes by varying the number of single-cycle
two-record comparators available: 4, 256, 2,048. However,
because we observe low marginal utility from increasing the size
of the merge network all the way to support 2,048 comparisons
per cycle, we conclude such complexity as unwarranted, and
omit presentation of their results.

3) Interface width: Near-Memory vs. In-Memory Logic:
We simulate a near-memory compute paradigm by modeling

Superstrider as an HBM controller chip. Although the row
buffer is 16,384 bits wide in an example HBM configuration,
data is provided to the base layer I/O in bursts that are only 128
bits wide. This means that such a near-memory logic
configuration is limited by this narrow burst width, although a
memory access reads an entire row into the memory row buffer.

By simulating higher interface widths we increase the
“nearness” of near-memory compute, thereby increasing the
“tightness” of the coupling between logic and memory, making
it in-memory compute at the limit. While a production HBM has
a 128 bit interface (burst) width, we simulate interface widths of
16,384 bits and 128K bits using HBM timing. However, in the
absence of off-the-shelf implementations, we hypothesize the
physical realization and timing of the larger interface widths.

4) Resource Pipelining
As the Superstrider instances are mutually independent, we

allow for interleaving between components across these
instances, and, thereby benefit from channel-level parallelism.

In addition, we optionally allow for pipelined execution
within each Superstrider instance:

Non-pipelined. There is no pipelining between the operation
of the components (open row buffer, accumulator, merge
network, function unit pool), as they process any given row.

Pipelined. This builds upon the simplistic approach above
by allowing adjacent components to overlap execution. For

example, as a row is being read out from memory in bursts, it
can proceed to the first stage of the merge network in same-sized
bursts without having to wait for the entire row to be first read.
Similarly, the last stage of the merge network can be overlapped
with the first stage of the function unit execution, the last stage
of which can be overlapped with the first stage of the deleting
network. This fine-grained pipelining can be implemented using
FIFOs.

Pipelined with Write Buffer. The pipelining described
above is limited to a single row because we need to have finished
processing a row in its entirety before we know the address of
the next row. As such, there is a window of time where the
memory channel is inactive while it waits for the row processing
to finish. Subsequently, there is another window of time where
the processing logic is inactive when the just-processed row is
being written back to memory. To increase the overlap between
logic and memory components, we employ a write buffer to
store processed rows and flush them out while a subsequent row
is being processed.

IV. RESULTS

A. Data transfers
The principal advantage of Superstrider is that it mitigates

the von Neumann bottleneck by reducing the number of
bandwidth-limiting and energy-consuming transfers between
the processor and memory. In conventional processors, cache-
line utilization (including hardware prefetching) for sparse
matrices is extremely low. In contrast, Superstrider makes
effective use of an entire row and there is no extraneous traffic.
In fact, to benefit from bank level parallelism and extract
maximal algorithmic efficiency, recall that we stride a
Superstrider row across its 8 banks, thereby making effective
use of 8×2048 byte wide rows at a time.

For an estimation of energy saved due to reduced memory
traffic, we count the number of times logic accesses memory at
a DRAM row granularity. We find that Superstrider accesses
over 121× fewer physical rows from memory than the von
Neumann baseline.

We will see in the next section that the amount of
computational resources required for orders of magnitude
speedup is relatively low. A detailed power model is beyond the
scope of this paper, but it is well known [2] that data transfers
are the primary contributors to energy consumption. Clearly, the
significant reduction in memory traffic described above renders
a proportional reduction in system energy.

B. Performance
The Superstrider algorithm reduces the number of transfers

between logic and memory thereby saving energy and reducing
wasted bandwidth, or in other words, the Superstrider
architecture circumvents the von Neumann bottleneck. As we
shall describe below, even the most resource-constrained
configuration results in close to 50× performance improvement
over von Neumann baseline. Upon subsequently removing
various resource bottlenecks from our Superstrider
implementation, simulation shows an additional speedup of
close to 80×.

19

For the memory+logic configurations of Section III, we now
present sensitivity of performance of each configuration to the
simulation parameters as outlined in Section III C.

Function unit pool configuration. Partitioned/8 yields a
speedup of 49-96× for an HBM-based near-memory logic
configuration with 4 comparators per channel, depending upon
the Superstrider pipelining configuration employed. In other
words, allocating just a single function unit and 4 comparators
per Superstrider channel yields significant benefits, as shown in
Fig. 5.

Partitioned/64 and FCFS Greedy/8 yield identical benefits. In
other words, the designer can make a tradeoff between
dedicating 8 function units per Superstrider channel for shorter
wires/low scheduling overhead, and, sharing 8 units across all
channels for improved resource utilization.

In general, we find that FCFS Greedy/64 approaches the
performance of Infinite# when 4 comparators are used, meaning
that 64 function units are more than sufficient as the bottlenecks
are in the sorting network and memory access width.

 Merge network size. For an HBM-based near-memory
logic configuration, increasing the number of comparators per
merge network from 4 to 256 yields an additional improvement
of 1.8-2.6×, depending upon the resource pipelining scheme
employed. Further increasing the merge network size is not
useful as the system is bottlenecked by memory access width.

Interface width. Increasing the interface width from 128
bits to 16,384/128K bits (or by 128×/1024× respectively)
renders an additional improvement of slightly less than 2× (for
all resource pipelining and function unit pool configurations)
when the system is bottlenecked by a mere 4 comparators.

However, upon also increasing the number of comparators
per merge network to 256, significant additional improvement is
seen when the interface width and the capability of the function
unit pool are increased, as shown in Fig. 6. The larger merge
network is now able to better keep up with data being delivered
due to the increased interface width, rendering improved
marginal utility of more powerful function unit pool
configurations as well.

 Further increasing the size of the merge network to support
2,048 comparisons per cycle realizes very modest improvements
when increasing interface width to 16,384 bits and larger.
Similarly, the fabrication/implementation cost of achieving
logic-memory integration all the way to 128K bits is not

sufficiently justified by the relative improvement in
performance.

Resource pipelining. Improving the degree of overlap
between logic and memory access components yields additional
benefits (about 2×) in a manner similar to that of improving the
function unit pool or merge network’s capability, as the system
becomes bottlenecked by interface width. This is demonstrated
in Fig. 5, but applies to other configurations as well.

In the general scenario, the relative order of efficiency is
Non-pipelined < Pipelined < Pipelined with Write Buffer.
However, in the scenario where there is little overhead in
computation (such as with over 2,048 comparators and 64
function units), using write-buffer based pipelining can be
detrimental to performance. This is because without a write
buffer, the write-back occurs to the same row, resulting in a
single precharge latency incurred upon closing that row, post its
write. With a write buffer, however, adjacent reads and writes
are to different rows, meaning that there is an additional
overhead of row activation and precharge. When there is little
overhead in computation, this additional row opening and
closing DRAM command latencies are no longer hidden. A row
remap memory may be designed to remove this limitation.

V. COMPARISON WITH RELATED WORK
Superstrider is a proposed hardware solution to address

computational efficiency issues for many algorithms that
experience performance degradation due to the von Neumann
bottleneck. Sparse matrix multiplication suffers performance
loss on current computational platforms due to this bottleneck.

Fig. 5. Significant performance improvements are seen even with
simplistic, resource-constrained implementations of Superstrider, owing
to alleviation of the von Neumann bottleneck.

208 250 250261

3519 3831

0
1000
2000
3000
4000

128 16384 131072Sp
ee

du
p

vs
 v

on

N
eu

m
an

n
ba

se
lin

e

Comparisons per cycle = 256, Pipelined with Write Buffer

PARTITIONED/8 FCFS_GREEDY/8 FCFS_GREEDY/64 INFINITE#

Fig. 6: The utility of increasing the compute resources available to Superstrider is realized only when the memory access bottleneck is loosened. By
simulating higher-than-128 interface widths, progressively tighter integration of logic and memory is realized. For space constraints, only the best resource
pipelining scheme is shown, although these trends apply to other schemes as well.

20

Many software solutions have been proposed to address this [8-
11]. However, little work has been done to address this issue in
the hardware space.

Song et. al. introduce a graph processor architecture that
represents graph processing as a sparse matrix algebra
problem [12]. They propose a novel node architecture that
comprises several modules including memory (cacheless),
ALU, systolic merge sorter, matrix reader and writer, control,
and interprocessor communication. The systolic merger sorter is
used for sorting matrix record indices during matrix operations
and is the key to graph processing. The ALU module operates
on a stream of sparse matrix elements, making it more efficient
than operation of data in a register file as in traditional processor
architectures. These graph processing nodes are interconnected
in a 3D toroidal configuration to form a 3D parallel processor.
Through bit-level simulation models using various graph
processing kernels, they show orders of magnitude speedup over
commercial systems.

A 3D-stacked logic-in-memory (LiM) system architecture
for accelerating graph processing proposed [13] has logic layers
stacked between DRAM dies that communicate vertically using
through silicon vias. Their customized logic for processing
sparse matrix data is integrated with a CAM memory
customized to specifically support matrix assembly in the
SPGEMM benchmark. Results show over two orders of
magnitude of performance and energy efficiency improvement
over traditional multithreaded implementations. However, they
operate only on compressed data, which means that the input
matrices have to be static. Not only do we provide comparable
benefits (if not better), our architecture is also capable of
supporting inputs that require dynamic insertion. Furthermore,
our abstraction provides the potential to implement other data
irregular applications by modifying the collision function to
something other than addition.

Although we simulated only the accumulation phase of
sparse matrix multiply (index sort and merge), this accounts for
more than 95% of computational throughput for sparse matrix
multiply [12]. Neither of the architectures described above
implement as tight an integration of logic and memory,
Superstrider implements a unique merge capability, is coupled
with HBM rather than a more traditional memory device, and it
strides/operates on a “super”-sized, very wide memory word.
All of these features together realize very large improvements in
computational efficiency.

VI. CONCLUSION
In this work, we present Superstrider, a 3D architecture that

integrates logic in memory to alleviate the von Neumann
bottleneck and increase computational efficiency of key
scientific algorithms, particularly the sparse matrix
accumulation phase in sparse matrix multiplication that suffers
from poor cache utilization. We show that Superstrider can
potentially provide orders of magnitude speedup for
accumulation compared to conventional von Neumann
architectures and processing.

This is as a result of improved bandwidth utilization and we
attribute this to its unique operational primitives (merge and
compress) that operate at the granularity of a memory row, and

its novel tree-based representation of sparse matrices. Even the
most resource-constrained HBM configuration simulated results
in a 50× performance improvement. Furthermore, reasonably
increasing the tightness of logic-memory integration and the
amount of computational logic resources available renders a
further, potential improvement of 80×.

VII. FUTURE WORK
The authors have already performed additional theoretical

work on Superstrider’s generality, reported in Ref. 3. The
memory “tightness” can be generalized into an incremental
development strategy, like Moore’s law. Also, the floating point
add and multiply operations are a mathematical semi-ring. If the
semi-ring is replaced by, for example, addition and minimum,
Superstrider can perform graph operations useful in, for
example, big data computations. The generalization of
Superstrider is an associative array processor.

It should be possible to broaden Superstrider’s function
beyond “accumulation.” For example, store matrices A and B in
Superstrider and create an empty tree for C. Then run a function
that computes C = AB with no processor intervention.

Hardware demonstrations should be possible, even without
building any hardware. There are companies selling HBM
controller IP that offer samples of their product as an FPGA
connected to an HBM stack. If these companies would allow
augmentation of the controller IP with Superstrider function,
perhaps these product samples could become the first production
Superstrider hardware.

REFERENCES
[1] G. E. Moore, “Crammng more components onto integrated ciruits,”

Electronics Magazine, vol. 38, no. 8, 1965.
[2] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the

energy cost of data movement in scientific applications,” presented at the
Proceedings of IEEE International Symposium on Workload
Characterization, 2013.

[3] Zhao, J., Zou, Q., & Xie, Y. (2017). Overview of 3-D Architecture Design
Opportunities and Techniques. IEEE Design & Test, 34(4), 60-68.

[4] J. Kepner, “Spreadsheets, Big Tables, and the Algebra of Associatve
Arrays,” MAA & AMS Joint Mathematics Meeting, Jan 4-7, 2012

[5] Batcher, K. E. (1968). “Sorting networks and their applications”. Proc.
AFIPS Spring Joint Computer Conference. pp. 307–31

[6] High bandwidth memory (hbm) dram. [Online]. Available:
https://www.jedec.org/standards-documents/results/HBM

[7] T. A. Davis and Y. Hu, “The university of Florida sparse matrix
collection,” ACM Transactions on Mathematical Software (TOMS), vol.
38, no. 1, 2011.

[8] K. Rupp, F. Rudolf, and J. Weinbub, “ViennaCL - a high level linear
algebra library for gpus and multi-core cpus,” in International Workshop
on GPUs and Scientific Applications, 2010.

[9] F. Gremse, A. Hofter, L. O. Schwen, F. Kiessling, and U. Naumann,
“GPU-accelerated sparse matrix-matrix multiplication by iterative row
merging,” SIAM Journal on Scientific Computing, vol. 37, no. 1, 2015.

[10] Deveci, M., Trott, C., & Rajamanickam, S. (2017, May). Performance-
Portable Sparse Matrix-Matrix Multiplication for Many-Core
Architectures. In Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2017 IEEE International (pp. 693-702). IEEE.

[11] S. Dalton, L. Olson, and N. Bell, “Optimizing sparse matrix-matrix
multiplication for the gpu,” ACM Transacations on Mathematical
Software (TOMS), vol. 41, no. 4, 2015.

[12] W. S. Song, J. Kepner, V. Gleyzer, H. T. Nguyen, and J. I. Kramer,
“Novel graph processor architecture,” Lincoln Laboratory Journal, vol.
20, no. 1, 2013.

[13] Zhu, Qiuling, et al. "Accelerating sparse matrix-matrix multiplication
with 3D-stacked logic-in-memory hardware." High Performance Extreme
Computing Conference (HPEC), 2013 IEEE. IEEE, 2013

21

Superstrider Associative Array Architecture

Erik P. DeBenedictis, Jeanine Cook

Center for Computing Research, Sandia National Labs

P. O. Box 5800 m/s 1319

Albuquerque, NM 87185-1319

epdeben@sandia.gov, jeacook@sandia.gov

Sriseshan Srikanth and Thomas M. Conte

School of Computer Science

Georgia Institute of Technology

Atlanta, GA 30332

seshan@gatech.edu, conte@gatech.edu

Abstract—We define the Superstrider architecture and report

simulation results that show it could be key to achieving HIVE

hardware goals. Superstrider’s performance comes from a novel

sparse-to-dense stream converter, which relies on 3D

manufacturing to tightly couple DRAM to an internal network so

operations like merging and parallel prefix can be performed

quickly and efficiently. With the ability to use the stream

converter as a programming primitive, the memory-bound low-

level graph operations that we are aware of speed up

substantially. We give special attention to triangle counting in

this paper.

Simulations detailed elsewhere1 show 50-1,000× improvement

in speed and energy efficiency. The low end of the range should

be achievable by constructing a custom controller for current

High Bandwidth Memory (HBM) where the high end would

require fully integrated 3D that is on roadmaps for the future.

Keywords—Superstrider; Moore’s law; 3D chips; sorting,

processor-in-memory; sparse matrix; backpropagation; associative

array; GraphChallenge

I. INTRODUCTION

The world went through an information revolution driven
by the exponential growth of microprocessor performance and
DRAM size popularly called Moore’s law. The flat lining of
microprocessor performance has led to talk of “Moore’s law
ending” and dire consequences to the economy. However, the
vertical axis on the graph defining Moore’s law in Fig. 1 is
clearly labeled “number of components per integrated
function” (chip) not “microprocessor performance” and some
companies find they can maintain growth in component count
by using the third dimension to stack more
devices per unit surface area. It seems the
economy and Moore’s law are healthy, but
the top-level division of computers into
microprocessors and DRAM must change.

Could GraphChallenge and the
associated HIVE hardware project have a
role in the future direction the industry? The

organizers of GraphChallenge make a compelling case that
important new classes of applications conflict with von
Neumann’s division of computers into processor and memory,
which we argued in the paragraph above is limiting the
industry as a whole. If the HIVE project develops a graph
architecture that scales in a way that is compatible with
physical-level semiconductor roadmaps, perhaps HIVE could
help define the mainstream direction of the industry?

A. Moore’s law and 3D

Even though industry wanted to discover a new transistor
for logic, it actually developed new memory devices that can
be manufactured in 3D. Developments in 3D chips have been
compelling enough that there are now roadmaps for further
staged development.3 The roadmaps show a path through
intermediate technologies with progressively more features in
the third dimension, a greater variety of devices, and more
efficient transfer of information along the third dimension.

There are two 3D commercial product categories right now.
Stackable DRAM is the first, available as High Bandwidth
Memory (HBM4, illustrated in Fig. 2a) and Hybrid Memory
Cube (HMC5). HBM transfers 16,384-bit DRAM rows as 128
cycles of 128 bits. 3D flash storage is the second product
category.

There are several visions for long term development of
fully integrated memory, storage, and logic, one example being
N3XT6 illustrated at the top of Fig. 2b. The tighter integration
of the proposed N3XT system would have no reason to limit
the width of the memory interface, so for consistency we
assume a 16,384-bit interface that operates in 1 cycle. In fact, a

scale up path can be defined based on the
tightness of logic-memory integration, as
shown in Fig. 2c.

II. APPROACH

 Fig. 3 shows the basis of our approach
for exploiting 3D memory to improve graph
and other computations. Industry’s historic
choice to manufacture DRAM and
microprocessors as separate chips caused a
“data modality” problem. Fig. 3a applies to
essentially any multi-chip computer system,
showing yellow logic chips, orange memory
chips, and connected by gray chip-to-chip
interconnect. Algorithms where information

Sandia National Laboratories is a multimission

laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC.,

a wholly owned subsidiary of Honeywell International,

Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-

NA-0003525.

Fig. 1. Graph defining Moore’s law from
Moore’s paper,2 projecting that device

count per chip will rise exponentially for

the decade 1965-1975.

Approved for unlimited unclassified release

SAND2017-7089 C

978-1-5386-3472-1/17/$31.00 ©2017 IEEE
22

dependencies alternate many times between logic and a large
memory (i. e. a memory too large for implementation by
cache) inevitably involve moving data across the interface
between the two twice per repetition, or shifting modes, as
illustrated by the green curve. While the efficiency of
electronics entirely within a chip improved with Moore’s law,
the speed and energy efficiency of chip-to-chip interconnect
scaled more slowly, creating a bottleneck.

A. Sorting networks

We remove the bottleneck using the additional design
flexibility offered by 3D. If memory can be stacked or
monolithically fabricated adjacent to logic along the chips’
planar faces, not only are wires shortened by the tighter
packing allowed by the additional dimension, but the modality
problem is relieved because data movement between logic and
memory no longer needs to traverse chip-to-chip interconnect.

The shift to 3D offers algorithmic benefit as well, which we
will discuss using sorting as an exemplary algorithm class.
Sorting has been studied extensively for the structures in Fig.
3a and b, where sorting networks, such as the O(log2n)-step
bitonic sort7 in Fig. 3c, have been known to be faster for
decades – but there is more to the story.

Fig. 3c shows the data dependency diagram for one merge
stage of bitonic sort. The diagram shows the merging of two
sorted lists of 8 data records, which occurs in 4 stages. The first
stage does pairwise comparison of all 16 values, swapping the
records so the largest one is on the left. The second and later
stages do pairwise comparisons as well, but on more groups of
fewer records. The pattern can extend to data that fills one or
more rows of DRAM. When implemented with the structure in
Fig. 3b, the comparisons and swaps can be laid out on the
surface of the logic layer as shown. The interface between

logic and memory will be via wires crossing the short gap
between the large 2D surfaces.

However, the literature for sorting algorithms follows
software conventions, which are modeled on a von Neumann
computer and hence the structure in Fig. 3a. A von Neumann
computer was originally viewed as doing one thing at a time –
although recent multicore computers can do up to, say, a dozen
things at a time. However, no von Neumann computer comes
anywhere close to being able to simultaneously operate on the
data in an entire row of DRAM at once. This is the rationale
for the Wikipedia page on “Sorting Algorithm” saying
“[p]ractical general sorting algorithms are almost always based
on an algorithm with average time complexity (and generally
worst-case complexity) O(n log n).”8 The best known such
algorithm is Quicksort.

Which sorting algorithm is fastest thus depends on whether
Fig. 3a or b is the model for implementation. A von Neumann
computer does the compare and swap operations one at a time,
raising the bitonic sort’s complexity from O(log2n) to
O(n log2n). Thus, Quicksort’s O(n log n) complexity makes it
faster than bitonic sort’s O(n log2n) complexity on a von
Neumann computer, but the winner shifts to bitonic sort for
implementation in 3D using Fig. 3b, allowing sorting O(log2 n)
steps, which is much faster.

B. Superstrider block diagram

Superstrider comprises a DRAM memory bank connected
to a functionally enhanced butterfly network and a control
system, as illustrated in Fig. 4. Functionally, Superstrider is in
a never-ending loop reading and immediately writing back
DRAM rows. However, the control system selects the row and
also uses functional features added to the butterfly network like
reduction and parallel prefix to modify the data between read
and write back.

Here are a few more details: A small portion of the DRAM
row width (a few dozen bits) is dedicated to control fields as
indicated in Fig. 4, but the rest comprises K data records. There
is also an accumulator that, in conjunction with the DRAM’s

HBM Row: 16,384 bits =

Interface width × Cycles Possible network size

128 bits (HBM) 128 8 = 4 × 2

256 64 24 = 8 × 3

512 32 64 = 16 × 4

1,024 16 160 = 32 × 5

16,384 (N3XT) 1 4,608 = 512 × 9

(c) Scaling scenario

128 bits

(a) HBM (Now) (b) N3XT (Future)

Read reg. (FIFO)

Write reg. (FIFO)

Accumulator

16,384

bits

Data

Logic Layer

Rank

16,384

bits

Fig. 2. (a) HBM physical structure on top and Superstrider layout on
bottom. (b) N3XT physical structure on top and functionally similar but

scaled Superstrider layout on bottom. (c) Hypothetical scaling sequence
based on doubling interface with, halving clock periods, and increasing

merge network depth.

Same architecture;

smaller version

logic

Data B

memor
y Data A

Data A

Data B

Fig. 3. (a) 2D systems comprise logic and memory chips, with the green

curve illustrating a mixed logic-memory calculation that is inefficient

precisely because of the partitioning into logic and memory. (b) A 3D
system with tight coupling between logic and memory avoids high

latency paths, bandwidth bottlenecks, and conversion of signals to high

energy levels for off-chip interconnects. The blue curve shows a

representative data movement step in sorting. (c) The sorting network

used for the 3D example.

(a) 2D (b) 3D w/merge network (c) Merge network

Data

A

Data

B

978-1-5386-3472-1/17/$31.00 ©2017 IEEE
23

open row buffer, form a 2K-record buffer; the butterfly
network actually operates on this double-length buffer. While
not shown, the memory is accessible to an external, von
Neumann-type, processor.

C. The sparse-to-dense stream converter

Imagine the pyramidal Champagne tower in Fig. 5a to be a
physical analogy of element insertion into a binary tree data
structure, where each Champagne glass corresponds to a
DRAM row holding K red or green records. A regular tree
insertion subroutine searches from the root downward through
descendant nodes until the proper one has been found, after
which the record is stored in its proper place and the subroutine
returns. However, pouring Champagne into the tower has a
feature not found in any computer algorithm (as far as we
know). Most of the Champagne poured into the top glass does
not end up in its final glass after just one pouring, but will
temporarily reside in glasses further up the tree until a later
pour causes it to move downward.

The problem is resistance to parallelization. If K records are
added at the root all at once, like pouring a glass of red and
green records into the top glass, there will be more groups of
fewer records moving at each level, as shown in Fig. 5a. Since
each glass is analogous to a DRAM row, almost all the DRAM
rows in the entire system will be accessed for even modest
values of K, which is why the structure in Fig. 3a experiences a
lot of inefficient data movement between logic and memory
chips for many problems.

Fig. 5b illustrates the idea behind Superstrider’s sparse-to-
dense stream conversion. When K records are poured into a
glass that contains another K records, Superstrider sorts these
2K records immediately and puts them back in the glasses, but
it carefully picks which glass gets the red versus green records.
Using the terminology of tree algorithms, each row has a pivot.
We’ll color records red if their key is less than the pivot and
green otherwise. There are now two scenarios corresponding to
the bottom halves of Fig. 5b. If sorting reveals K or more red

records, one glass will be entirely red and the other glass will
have mixed colors. If there are less than K red records, there
must be more than K green ones, so the previous statement will
be true with the colors interchanged. Now pour the glass where
all the records are the same color down just one subtree and
leave the other glass in its position in the tree with both colors.

The catch is that the records are not properly added to the
subtree that is not visited. So does Superstrider go back and
visit the subtree with incompletely processed records? No. That
subtree is ignored for the time being. Graph problems typically
do long sequences of additions, so subsequent sorts of that tree
node will eventually produce enough records of the other color
that the subtree will be visited naturally. Simulation shows this
to be very efficient for long sequences of additions, yet a
cleanup phase, which we call normalization, is required at the
end to move laggard records to their proper destination.

The step count reduction is significant and arguably an
“order reduction.” Adding a single element to a tree is an O(log

N) operation in standard algorithm theory, where N is the
number of elements in the tree. Superstrider can add K
elements in this amount of time, making the step count per
record added O(log N)/K, which captures parallelism but is not
an order reduction. However, DRAMs are designed to be
refreshed in 8,192 cycles, meaning they actually have 8,192
rows at some low level of the DRAM electronics. If the

number of rows is fixed, K N, and the step count reduces to
O((log N)/N), which is an order reduction. This argument is
rather abstract. If the reader prefers, Ref. 1 shows speedups of
50-1,000×.

D. Connection to associative arrays

The preceding description spoke of a 16,384-bit DRAM
row being divided into a few dozen control bits and the

Fig. 5. (a) Fluid flow in a Champagne tower, such as used at a wedding

reception, and a tree insertion algorithm. Imagine a Champagne glass
holds K red or green records in lieu of Champagne molecules. Pouring K

records into a glass or tree node recurses to two similar operations of size

K/2, ultimately disturbing nearly every glass in the tower. (b)
Superstrider can sort based on comparing keys with a pivot, where the

comparison result is illustrated by color, yielding asymptotically fewer

steps. If the amount poured at one time is the same as the capacity of a
glass tree node (K records), sorting the 2K items by color is guaranteed to

produce at least K items of the same color. Recursion will be needed only

down the branch with the predominate color (i. e. tail recursion) and the
algorithm will have just O(log N) steps for K records. (Photo

https://vimeo.com/114254175, labeled for noncommercial reuse.)

(a) Champagne tower (b) Superstrider

OR

Flow 1

Flow 1 Flow 1

Flow

¼

 Legend:

Red less than pivot

Green more than pivot

Flow 1

Flow

½

Flow

½

Fig. 4: Superstrider block diagram. A memory bank connects to the logic

across its entire width, typically 16,384-bits. The logic comprises a
butterfly network with functions listed, connected to both the memory

and an accumulator (in the historical sense of the word). A control system

implements a basic cycle where DRAM is read and written back
continuously as fast as possible. Superstrider function change data

between read and write, including storing data in the accumulator.

Open row

buffer

Control

DRAM & Flash

or alternatives

Accumulator

etc.

Network functions:

Merge
Reduce

Parallel prefix

Parallel suffix

Data routing

Scalar fields for:

Tree descendants

Pivot

Return address

Etc.
 16,384 bits

Row

number

978-1-5386-3472-1/17/$31.00 ©2017 IEEE
24

remainder into K records. In the notation of associative arrays,9
each record is of the form { k, vk }, where k is a key and vk is a
value. If the record is an int and a float, the record is 64 bits
and K is about 256 records. The DRAM may contain multiple
arrays such as A, B, and C where A[k] = vk.

Previous sections of this paper only referred to sorting
records, but the butterfly network also uses the network
functions listed in Fig. 4 to identify collisions and compress
records. This means the sparse-to-dense stream converter
performs accumulation part of sparse matrix multiply.

The Superstrider concept is generally compatible with
generalizations of associative arrays, but low-level hardware
would need to process diverse data types and aggregations
beyond what we have actually studied. The Superstrider
concept should support associative arrays defined as A[ki] = vi,
where A is the associative array, k = (k1…kd) is an array of
indices of primitive types, and v may be a data structure of
primitive types. Furthermore, even values that are data
structures must be an element of a semiring, in which case
there will be application-specific operators corresponding to

multiplication and addition (and).

Given the previous definitions, Superstrider could execute
graph algorithms, like shortest path, where the values are floats
or integers (albeit extended to include ∞) and the operation is

. min.+.

While certain simple kernels can be expressed in
associative array syntax like C = A +.* B, many of the more
complex algorithms involve hundreds or thousands of lines of
conventional computer code interspersed with calls to
compute-intensive associative array operations. Reproducing
an example from Ref. 9, the Bellman-Ford algorithm for
finding the shortest distance from a node s to all other nodes in
a graph A appears below, where only the red characters would
be performed by Superstrider.

Bellman-Ford (A, s)
d = ∞
d(s) = 0
for k = 1 to N-1
 do d = d min.+ A
if d ≠ d min.+ A
 then return “A negative-weight cycle exists”
return d.9

E. Superstrider programming strategy

The sparse-to-dense stream converter becomes a
programming primitive of sorts, so we owe the reader a brief
lesson on how to program with it. This introduction will lead
up to the discussion of triangle finding requested by the Graph
Challenge.

Sparse matrix multiply C = AB can be performed with
multiplications on a host or entirely stand alone. For the first
option, Superstrider is initialized with an empty C matrix. The
host then sends Superstrider vectors of K records of the form
[i, j] = cij

(k), where i and j are matrix indices, cij
(k) is a

contribution to a matrix element, with superscript (k)
distinguishing between the contributions. After sending all the
records, the host would command Superstrider to do the

normalize function, which cleans up the representation so it
could be read out by the host in a packed lexicographic order.

Alternatively, Superstrider could compute C = AB
autonomously, where matrices A and B are already stored in
Superstrider’s memory. This requires first transposing A from
A[i, k] = aik to At[k, i] = aik. This is accomplished by
Superstrider accessing A internally, interchanging the indices,
and sending the records into the sparse-to-dense converter as
At. This entire process is performed by the hardware in Fig. 4.
Reading At later on will produce the records in lexicographic
order by what was originally the second index. The actual
multiply is then performed by streaming At and B[k, j] = bkj,
each in lexicographic order, whereby the products

Cij
(t) = k=1,t aikbkj can be formed by data close together in the

streams. The products are then sent to the sparse-to-dense
stream converter to creates C, using collision of the keys to
perform the addition required in sparse matrix multiplication.

The delta rule in backpropagation of neural network
learning, is defined as C = C + abt, which we will perform with
no fill-in in two steps. First, C[i, j] = cij is streamed along with
a[i] = ai to produce a temporary matrix T[j, i] = { cij, ai }. Note
that T’s indices are reversed, so its records contain the
elements of Ct. In addition, T’s records are a data structure
with both an element of Ct and an element of a. Secondly,
T[j, i] = { cij, ai } is streamed along with b[j] = bj to produce
C[i, j] = Tji.cij + bj * Tji.ai, which naturally adds to the existing
C when sent to the sparse-to-dense converter due to collisions.
Since Tji is a data structure, the notation Tji.ai represents the
second element of { cij, ai } given above (sorry, we need better
notation for data structures).

F. 3D Streaming and triangle counting

Superstrider is essentially a linear algebra machine, so it
should be able to execute any triangle-counting algorithm that
can be expressed as linear algebra. The authors’ attention was
directed to the semi-streaming triangle-counting approach of
Becchetti in Ref. 10, a paper from 2007. In short, we would put
Becchetti’s entire algorithm into Superstrider, but this simple
statement has more to it than may be immediately apparent.

We propose going a step beyond Becchetti’s view of semi-
streaming.10 Becchetti sees a computer as a CPU and DRAM in
one unit and “disks” (yes, the article uses the word for rotating
storage) on the other side of the cabinet. The large edge-
containing matrices are on the disk but DRAM is only deemed
big enough to hold vertex-containing matrices. If one were to
implement Becchetti’s system today, the disk storage would
probably be 3D SSD. So when we say we would “put the entire
algorithm into Superstrider,” we envision 3D chips, such as
N3XT in Fig. 2b,6 with the ability to integrate both RAM-
equivalent and storage-equivalent storage right on top of the
same logic base chip. This leads to a second interpretation,
illustrated in Fig. 4, where Superstrider’s memory includes
both DRAM and Flash in different ranges of row addresses, yet
all appearing to Superstrider as a memory bank. This would
allow Superstrider to, for example, multiply a matrix
physically stored in Flash by one physically stored in DRAM
just by properly specifying the row addresses. Let’s call this

978-1-5386-3472-1/17/$31.00 ©2017 IEEE
25

“3D steaming” because it works like streaming, but moves data
just a few microns in the vertical direction.

Ref. 10’s method is based on tagging vertices with random

numbers or permutations of node numbers ((.) in the
document). With the possible exception of having a von

Neumann host processor generate the permutations (.),
Superstrider could implement the algorithms in Ref. 10’s using
the linear algebra functions discussed above.

We therefore propose supporting triangle finding with a
change in algorithm. Line 15 of figure 5 in Ref. 10 is executed
when a triangle has been found, although in Ref. 10 it only
triggers a counter increment. We propose that this line
additionally create a 3-field record containing the triangle and
send it to a sparse-to-dense stream converter designated to hold
the output triangles.

We believe the algorithm as outlined so far will function,
but it will still be probabilistic, generating the same triangle
many times (the duplicates will be removed by the stream
converter) and it may take a lot of runs to generate the very last
triangle. So we propose modifying the tagging to effectively
remove nodes once it has been determined that they have
produced all the triangles they will ever produce. This can be

done by tagging nodes with in lieu of (.).

III. EXPERIMENTS

We created a cycle accurate Superstrider simulator or 1,500
or 3,500 lines of C++, depending on whether the user interface
code is counted. The simulator compares the accumulation
phase of sparse matrix multiply against a von Neumann
architecture baseline.

A. Memory banks

To make reasonable comparisons with a conventional
processor, the simulator illustrated in Fig. 6 models 8 identical
instances of Superstrider, each connected to an HBM channel.
Each HBM channel comprises 8 16,384-bit wide physical
DRAM banks. To consider the extreme range of algorithmic
efficiency, each Superstrider row is set as wide as possible,
i. e., K = 2,048 records or 131,072 bits wide.

The physical configuration of a bank and the timing
parameters were obtained from the High Bandwidth Memory
(HBM) JEDEC standard,4 however we speculated on the
timing of hypothetical HBM successors with wider interfaces
per the scale up path in Fig. 2c.

B. Front end

A front end generates vectors of K sorted records to feed
both Superstrider and the von Neumann baseline. The front end
does not reorder the sparse matrices and the baseline does not
simulate caches because there is negligible spatial locality in
sparse matrices. The baseline traverses the HBM banks as
rectilinear memory, i. e., without the binary tree format of the
Superstrider algorithm. The front end supports matrices
downloaded from the University of Florida11 sparse matrix
collection as well as pseudo-random sparse matrices generated
on the fly. However, the results in this paper are for pseudo-

random matrices with 27 million records where the keys are
randomly chosen from a space of 27 million possibilities.

C. Simulated parameters

In the simulator, we vary the following five parameters to
explore the design space: (1) the width of the logic/memory
interface, (2) the size of butterfly network, (3) the number of
adders comprising the adder network for collisions, (4) effects
of adder partitioning schemes across Superstrider instances,
and (5) resource pipelining.

IV. RESULTS

A. Data transfers

The principal advantage of Superstrider is that it mitigates
the von Neumann bottleneck by reducing the number transfers
between the processor and memory, and the number of internal
memory accesses. In conventional processors, cache-line
utilization (including hardware prefetching) for sparse matrices
is extremely low. In contrast, Superstrider makes effective use
of an entire row.

The simulator counts the number of DRAM row accesses
to estimate energy saved due to reduced memory traffic.
Superstrider accesses 1/121 as many physical memory rows as
the von Neumann baseline on the random test case, although
this fraction is highly application dependent.

B. Performance

The vertical axis of the 3D bar charts in Fig. 7 is the
speedup of Superstrider over the von Neumann baseline. Two
messages are clear even at the low-level of detail in this paper.

1. Even the thinnest bars show a speedup of 50× or more,
making Superstrider a candidate for implementation as a
controller for off-the-shelf HBM memory.

2. Both the 16K and 128K interface widths include
speedups of 1,000× or more, although only with 256 or more
comparators. In simple terms, Superstrider can make very good
use of tight memory-logic integration, but the interface can be

128-,

16K-,

or
128K-

bit

inter-

face

HBM Die

HBM Ctrl

HBM Die

8× Superstrider

HBM Die

8× Superstrider

Fig. 6: Experimental framework. Baseline is an HBM stack with controller
(8 channels) but no cache anywhere. For compatibility, Superstrider is

implemented as 8 instances, one per HBM rank or channel, with a

parameter sweep over additional parameters.

Front end:

Random or

Matrix Market13

HBM Die

8× Superstrider

128-
bit

inter-

face

von Neumann baseline

Superstrider (108 versions)

Additional parameters:

Adders

Comparators

Interleave and/or pipeline

978-1-5386-3472-1/17/$31.00 ©2017 IEEE
26

“choked” by insufficient computational resources. The
resource is the comparators in this case, but see Ref. 1 for an
explanation of this component and the other parameters.

V. CONCLUSIONS

In an environment rife with computer technology efforts to
redesign computers from the devices up, we propose to address
graph problems through carefully chosen computer architecture
and algorithms yet based on just roadmaps of 3D chips. Our
result of 50× immediate benefit and 1,000× or more in the long
term is good enough to drive the industry and is on par with the
more radical approaches.

Instead of writing a specific algorithm or buying or
building a specific instance of hardware, we considered a
computer whose design is parameterized by the date of
manufacture and running software that adapts to the hardware
as it changes. The principle parameter is the “tightness” of the
logic-memory interface, where roadmaps can be consulted for
a rough schedule of this parameter over time. We then created
a cycle-accurate simulator and applied it to the most
challenging computational kernel, which is sparse matrix
multiplication and specifically the accumulation phase.

Algorithm theory showed that the tightening interface
between memory and logic will make hardware
implementation of sort, merge, parallel prefix, and some other
network operations progressively more effective, where the
“von Neumann bottleneck” makes them poor choices today.
Using the principle of Occam’s razor, we packed Superstrider
with as much of the new hardware as possible and as few
traditional components as absolutely necessary .

A. Loose ends

Superstrider is a chip-scale solution, but we need a way to
glue n Superstriders together have the same effect as an n×
bigger one.

We need to turn the simulator into a low-level linear
algebra library and then run triangle counting algorithms, as
requested by GraphChallenge.

It should be possible to configure Superstrider’s internal
state machine to do functions besides a sparse-to-dense stream
conversion, although it will be a challenge to figure out the
right functions.

Superstrider generalizes beyond DRAM.

B. Crossing the valley of death

We designed Superstrider to cross the “valley of death.” In
our view, an innovation needs immediate product potential and
a long term vision to cross the valley:

For an immediate product, Superstrider could be created in
an Intel/Altera Stratix 10 MX or Xilinx Virtex Ultrascale+
FPGA, both of which will come with on-package High
Bandwidth Memory when they available (for engineering
samples) in 6-12 months. They would implement Superstrider
in the programmable logic of the FPGA and test the result.
Simulations suggest about 50× improvement in speed for an
HBM implementation, but the simulations do not account for
the speed and energy efficiency penalty inherent in FPGA
implementations. Of course, an FPGA test would reduce risk
for an ASIC implementation.

Superstrider is part of a project to roadmap the continuation
of Moore’s law, which recently went down a dead end by
limiting itself to the microprocessor and better transistors. The
project’s goal is to devise and promote architectures like
Superstrider that can advance emerging applications areas like
graph problems, and then roadmap these approaches in the
IRDS to facilitate their funding. The plan is to roadmap a
scale-up path like “Moore’s law” based on progressively
tightening logic-memory interfaces through 3D packaging, as
shown in Fig. 2. This paper is one element of the strategy.

inf. func. units

inf. func. units

Fig. 7. Superstrider simulation results over the parameter sweeps discussed in the text. The vertical axis represents speedup over a non-cached sequential
HBM driven by a microprocessor. The conspicuous result is that performance is high in the back, right hand row. This area corresponds to tight processor

memory coupling (wide HBM burst width) and a large number of ports on the merging network. The other parameters are well-known techniques from
microprocessor architecture, such as pipelining and interleaving. While these other parameters yield the expected benefit, it appears small in the context of the

benefits of the non-von Neumann architectural components.

part/8

part/64

fcfs and greedy/64

part/64

part/8

fcfs and greedy/64

inf. func. units

part/8

part/64
fcfs and greedy/64

128K-bit interface

16K-bit interface

128-bit interface

No interleave Interleave Interleave + Pipeline

Speedup vs.

baseline
Speedup vs.

baseline
Speedup vs.

baseline

Comparators
same for all

plots

Comparators
4

256

2048

978-1-5386-3472-1/17/$31.00 ©2017 IEEE
27

REFERENCES

[1] Srikanth, Sriseshan et. al. The same authors with author names in a
different order, have submitted a paper to ICRC with details of the
archtiecture. If not accepted, this other paper could be published as a
Sandia tech report. "[the superstrider paper]." IEEE ICRC xx.y (2017):
pp. If a reviewer wants to see this paper prior to its publication, it will be
avialable temporarily at
http://www.debenedictis.org/erik/ComputerPapers/GraphChallenge/ICR
C_Superstrider_v3.4.pdf. Also, the simulator is online, open source, at
http://www.debenedictis.org/SuperStrider.cpp.

[2] G.E. Moore, “Cramming More Components onto Integrated Circuits,
Reprinted from Electronics, Volume 38, Number 8, April 19, 1965, pp.
114 ff,” IEEE J. Solid-State Circuits Newsletter, vol. 11, no. 5, 2006, pp.
33–35.

[3] International Roadmap for Devices and Systems, http://irds.ieee.org

[4] High Bandwidth Memory (HBM) DRAM (JESD235), JEDEC, October
2013 http://www.jedec.org/standards-documents/results/jesd235

[5] Official website of the Hybrid Memory Cube Consortium
http://www.hybridmemorycube.org/

[6] M.M. Sabry Aly et al., “Energy-Efficient Abundant-Data Computing:
The N3XT 1,000X,” Computer, vol. 48, no. 12, 2015, pp. 24–33.

[7] Batcher, Kenneth E. "Sorting networks and their applications."
Proceedings of the April 30-May 2, 1968, spring joint computer
conference. ACM, 1968.

[8] See https://en.wikipedia.org/wiki/Sorting_algorithm.

[9] Kepner, Jeremy, and John Gilbert, eds. Graph algorithms in the
language of linear algebra. Society for Industrial and Applied
Mathematics, 2011.

[10] Becchetti, Luca, et al. "Efficient semi-streaming algorithms for local
triangle counting in massive graphs." Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2008.

[11] T. A. Davis and Y. Hu, “The university of Florida sparse matrix
collection,” ACM Transactions on Mathematical Software (TOMS), vol.
38, no. 1, 2011.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE
28

Chapter 4

RRNS for Error Correction

This paper is to appear in the ACM Transactions on Architecture and Code Optimization (TACO).

29

1

Extending Moore’s Law via Computationally Error Tolerant
Computing

BOBIN DENG, Georgia Institute of Technology*
SRISESHAN SRIKANTH, Georgia Institute of Technology*
ERIC R. HEIN, Georgia Institute of Technology
THOMAS M. CONTE, Georgia Institute of Technology
ERIK DEBENEDICTIS, Sandia National Laboratories**
JEANINE COOK, Sandia National Laboratories
MICHAEL P. FRANK, Sandia National Laboratories

Dennard scaling has ended. Lowering the voltage supply (Vdd) to sub volt levels causes intermi�ent losses in
signal integrity, rendering further scaling (down) no longer acceptable as a means to lower the power required
by a processor core. However, it is possible to correct the occasional errors caused due to lower Vdd in an
e�cient manner, and e�ectively lower power. By deploying the right amount and kind of redundancy, we can
strike a balance between overhead incurred in achieving reliability and energy savings realized by permi�ing
lower Vdd . One promising approach is the Redundant Residue Number System (RRNS) representation. Unlike
other error correcting codes, RRNS has the important property of being closed under addition, subtraction
and multiplication, thus enabling computational error correction at a fraction of an overhead compared to
conventional approaches. We use the RRNS scheme to design a Computationally-Redundant, Energy-E�cient
core, including the microarchitecture, ISA and RRNS centered algorithms. From the simulation results, this
RRNS system can reduce the energy-delay-product (EDP) by about 3× for multiplication intensive workloads
and by about 2× in general, when compared to a non-error-correcting binary core.

Extension of Conference Paper : �is paper is an extension of ”Computationally-Redundant Energy-E�cient Processing for
Y’all (CREEPY)” [11]. �is submission adds the following:

(1) Correction factor analysis for RRNS signed arithmetic, including an improved correction factor computation for
signed multiplication via an LUT based mechanism. (Section 4.8.5)

(2) Design and evaluation of an e�cient RRNS multiplier unit by using the index-sum technique, along with associated
re-derivation of suitable RRNS bases. (Sections 4.4 and 4.5)

(3) A novel adaptive check insertion strategy that leverages hardware/so�ware runtime or compiler. (Section 4.6.3)
(4) Impact of multi-domain voltage supply to further lower energy consumption. (Sections 4.7, 6.1 and 6.3)
(5) Improved evaluation accuracy by simulating an LLC-main memory hierarchy instead of a perfect cache. (Section

5)
(6) Energy limit analysis for binary, RNS and RRNS cores. (Section 6)

�ese add signi�cantly more than 30% new material and provide greater insight into RRNS core design. W.r.t. wri�en
content, every section has been revamped to be�er present the new �ndings above.

* �ese authors contributed equally to this work.
** �is work is supported by Laboratory-Directed Research and Development (LDRD) Project 180819 from Sandia National
Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energys National Nuclear Security Administration under contract DE-NA0003525. Approved for public
release SAND2018-0257 J.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 ACM. XXXX-XXXX/2017/1-ART1 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

30

1:2 B. Deng, S. Srikanth et al.

CCS Concepts: •Computer systems organization →Reliability; Processors and memory architec-
tures; Redundancy;

Additional Key Words and Phrases: Error-tolerant computing, low energy, reliability

1 INTRODUCTION
Dennard scaling [12] has been one of the main phenomena driving e�ciency improvements of
computers through several decades. �e main idea of this law is that transistors consume the same
amount of power per unit area as they scale down in size. However, leakage current and threshold
voltage limits caused Dennard scaling to end [46] about a decade ago. �is essentially negates any
performance bene�ts that Moore’s law may provide in the future; power considerations dictate that
a higher transistor density results in either a lower clock rate or a reduction in active chip area.

�eis and Solomon [82] suggest that new device concepts within the purview of two-dimensional
lithography technology, such as tunneling FETs, enable reduction of the 1

2CV
2 energy to small

multiples of kT , without resulting in low switching speed [81]. Similarly, research on ferroelectric
transistors, aka negative capacitance FETs (NCFETs) demonstrates a sub-60mV /dec slope as well
as a higher drive current [34–36, 65], both of which are necessary in rendering Vdd reduction
bene�cial to energy reduction without sacri�cing performance.

�ese next generation devices are fast switching even at few tens of millivolts, but as a result,
are vulnerable to thermal noise perturbations. �is translates into intermi�ent, stochastic bit errors
in logic. With signal energies approaching the kT noise �oor, future architectures will need to treat
reliability as a �rst-class citizen, by employing e�cient computational error correction.

In this paper, we propose a scalable architectural technique to e�ectively extend the bene�ts of
Moore’s law. We enable reducing the supply voltage beyond conservative thresholds by e�ciently
correcting intermi�ent computational errors that may arise as a result of thermal noise. Energy
bene�ts are observed as long as the overhead incurred in error correction is less than that saved by
lowering Vdd . �e creepy approach of introducing error correcting hardware to lower energy is
demonstrated as bene�cial in this paper.

1.1 Contributions
(1) Development of microarchitecture, ISA and RRNS centered algorithms towards a

Computationally-Redundant, Energy-E�cient core design.
(2) Design and analysis of an e�cient RRNS multiplier unit using the index-sum technique.
(3) Novel RRNS-check-insertion heuristics to optimize performance/energy/reliability trade-

o�s.
(4) Derivation of an estimated lower limit on signal energies via stochastic fault injecting

simulation.
We �rst introduce some mathematical background and notation in Section 2 and then provide

a high level overview of a CREEPY core in Section 3 before describing the RRNS algorithms
and several other aspects towards designing a CREEPY core in Section 4. We then describe our
evaluation methodology, results before discussing related work and concluding in Sections 5, 6, 7
and 8 respectively.

2 BACKGROUND
2.1 Triple Modular Redundancy (TMR)
Error-correcting codes (ECC) are widely used in modern processors to improve reliability. However,
these are limited to memory/communication systems and are unable to achieve computational

31

Computationally Error Tolerant Computing 1:3

Table 1. A (4, 2)-RRNS example with the simplified base set (3, 5, 2, 7, 11, 13).
Range is 210, with 11 and 13 being the redundant bases.

Decimal mod 3 mod 5 mod 2 mod 7 mod 11 mod 13
13 1 3 1 6 2 0
14 2 4 0 0 3 1

13+14=27 (1+2)mod 3=0 2 1 6 5 1
All columns function independently of one another.

An error in any one of these columns (residues) can be
corrected by the remaining columns.

+

13 14

27

+

13 14

25

+

13 14

27

Majority	 Vote

27

Fig. 1. Triple Modular Redundancy in action.

fault tolerance. �e conventional approach to computational fault tolerance is TMR [86]. As shown
in Figure 1, the idea is to replicate the computation twice (for a sum total of three computations
per computation) and then take a majority vote. With a model that assumes that at most one of
these three computations can be in error at any given point in time, it follows that at least two of
the computations are error-free; this can thus be used to detect and correct a single error, assuming
an error-free voter.

While simple to understand and implement, this introduces more than 200% overhead in area
and power leaving plenty of room for improvement. Any energy savings from lowering Vdd would
be eclipsed due to this overhead in correcting resultant errors.

2.2 Residue Number System (RNS)
�e Residue Number System has been used as an alternative to the binary number system chie�y
to speed up computation [1, 51]. �is increased e�ciency comes from the fact that a large integer
can be represented using a set of smaller integers, with arithmetic operations permissible on the
set in parallel. We present some of the properties of RNS below.

Let B = {mi ∈ N f or i = 1, 2, 3, ...,n} be a set of n co-prime natural numbers, which we shall
refer to as bases or moduli. M =

∏n
i=1mi de�nes the range of natural numbers that can be

injectively represented by RNS that is de�ned by the set of bases B. Speci�cally, for x such that
x ∈ N and x < M , then, x ≡ (|x |m1 , |x |m2 , |x |m3 , ..., |x |mn), where |x |m = x mod m. Each term in
this n-tuple is referred to as a residue.

We also note that addition, subtraction and multiplication are closed under RNS. �is is because
of the following observation: given x ,y ∈ N and x ,y < M , we have |x op y |m = | |x |m op |y |m |m ,
where op is any add/subtract/multiply operation.

2.3 Redundant RNS (RRNS)
To augment RNS with fault tolerance, r redundant bases are introduced. �e set of moduli now
contains n non-redundant and r redundant moduli: B = {mi ∈ N f or i = 1, 2, 3, ...,n,n+1, ...,n+r }.
�e reason these extra bases are redundant is because any natural number smaller than M
(= ∏n

i=1mi) can still be represented uniquely by its n non-redundant residues. Intuitively,
the r redundant residues form a sort of error code because all residues are transformed in
an identical manner under arithmetic operations. For x such that x ∈ N, x < M , then,

32

1:4 B. Deng, S. Srikanth et al.

x ≡ (|x |m1 , |x |m2 , |x |m3 , ..., |x |mn , |x |mn+1 , ..., |x |mn+r) contains n non-redundant residues as well
as r redundant residues. For convenience, we further de�ne MR =

∏n+r
i=n+1mi .

Upon applying arithmetic transformations to an RRNS number, any error that occurs in one
of the residues is contained within that residue and does not propagate to other residues. When
required, such an error can be corrected with the help of the remaining residues. Speci�cally, an
RRNS system with (n, r) = (4, 2), a single errant residue can be corrected, or, two errant residues
can be detected. Table 1 provides a simple example, Section 4.8 outlines necessary algorithms
to do so. Research by Watson and Hastings [25, 89, 90] lays the foundation for the underlying
theoretical framework that is used and extended in our work. �eir work also details algorithms
to handle RRNS scaling and fractional multiplication. �ey used (199, 233, 194, 239, 251, 509) as
the (4, 2)-RRNS system, providing a range M = 199 × 233 × 194 × 239 ∈ (231, 232). In Section 4.5,
we discuss the methodology and implications of choosing a di�erent set of RRNS bases for the
purposes of trading range with overhead.

Not only does a residue number system achieve a higher e�ciency due to enhanced bit-level
parallelism (also, no carries required for addition), but also that introducing 50% of overhead is
su�cient to provide resiliency. As the granularity of an error is that of an entire residue, RRNS is
capable of potentially correcting multi-bit errors as well, for free.

We design a computer based on these properties.

3 CREEPY OVERVIEW
Given new device concepts that enable device operation at signal energies close to the kT noise
�oor [34–36, 65, 81, 82], CREEPY aims to achieve lower energy consumption by lowering Vdd in
such a manner that the intermi�ent errors that thereby arise are corrected e�ciently.

We take note of the compute preserving properties of RRNS (cf. Section 2.3) and propose building
a Turing-complete computer around this idea.

A CREEPY core consists of 6 subcores, an Instruction Register (IR) and a Residue Interaction Unit
(RIU), as depicted in Figure 2.

Each subcore consists of an adder, a multiplier, a portion of the distributed register �le and a
portion of the distributed data cache. �e bit-width of these components is same as that of their
corresponding residue (8-bit or 9-bit in this example). Each subcore is fault-isolated from the other
because it is designed to operate on a single residue of data(analogous to a bit-slice processor, with
bolsters). Post a successful instruction fetch (the instruction cache stores instructions in binary,
and is ECC-protected), the ECC-checked instruction is dispatched onto the 6 subcores, which then
proceed to operate on their corresponding slice of data. For example, adding two registers is done
on a per residue basis; the register �le is itself distributed across the 6 subcores. Similarly, the data
cache is also distributed across the 6 subcores and stores RRNS protected data. �e RIU is then
responsible to perform any operations that involve more than a single residue.

Section 4 evaluates several aspects of designing such a core, and provides solutions. For example,
conventional multipliers incur high cost in both energy and area, therefore, we leverage RRNS
properties to provide an e�cient solution in Section 4.4. �e RRNS base selection is also very
important in CREEPY core design because it directly a�ects the computational range and energy
e�ciency, which we discuss in Section 4.5. �e RIU logic includes 3 parts: RRNS consistency check
logic, RRNS comparison logic and RRNS to binary conversion logic.For the RRNS consistency check
logic and RRNS comparison logic designs, we have detailed discussions in Section 4.8.1 and Section
4.8.4 respectively. �e RRNS to binary conversion logic is relatively less important as it is used
only to support operations that are not native to RRNS, such as bit-shi�ing and division, which are
relatively few in number. Furthermore, the circuitry to convert from RRNS to binary is identical to

33

Computationally Error Tolerant Computing 1:5

Subcore 1
Modulus

𝒎𝟏

Subcore 2
Modulus

𝒎𝟐

Subcore 3
Modulus

𝒎𝟑

Subcore 4
Modulus

𝒎𝟒

Subcore 5
Modulus

𝒎𝟓

Subcore 6
Modulus

𝒎𝟔

Residue Interaction Unit(RIU): Consistency Check, Comparison, RRNS to Binary Conversion, etc.

Verified
Addr/DataNon-Redundant Moduli Redundant Moduli

Core

Instruction Register(IR)

ICache DCache

Memory

Fig. 2. The CREEPY Core with the reference RRNS system. The register file and data cache are distributed
across the subcores.

that found in the literature[7, 25, 76] to convert from RNS to binary, therefore we omit it for space
constraints.

Because conversions to and from binary are expensive and rather unnecessary for RRNS data, a
CREEPY core operates entirely on RRNS data and literals. An upshot of this is that control-path
errors manifest themselves as data errors, meaning that they can be handled simply by handling
the data error. For example, if there is an error in bypass logic in a subcore, or, if a faulty decoder
in one of the subcores causes it to perform a multiplication instead of an addition, the resultant
residue for that subcore would have an erroneous value, but can be recovered from the remaining
5 residues that were a result of the correct addition operation.

Although operating entirely on RRNS data and literals avoids the signi�cant overheads of
converting to/from binary, representing a memory address (for the purposes of PC, LD and ST)
in an RRNS format naively may cause signi�cant degradation in locality and changes memory
access pa�erns, which is fundamental to memory systems performance. �is issue has already
been handled by Srikanth et. al. [70], where they propose bit-manipulation techniques as well as
a compiler based approach, with li�le to no overhead. Of the techniques proposed, their rns sub
scheme, which essentially subtracts the least signi�cant residue from the others, renders the most
energy e�cient architecture along with the added advantage of requiring no support from the
so�ware stack.

Interfacing a CREEPY core with heterogeneous accelerators (such as those on an SoC) that may
or may not be RRNS based, is a more involved issue, and we leave that to future work.

CREEPY employs standard ECC-protected main memory because of ECC’s compactness and
e�ciency when it comes to protecting stored data. However, standard ECC isn’t amenable to
computational fault tolerance and therefore, the representation of data is in RNS form (as opposed
to binary). �e memory controller checks ECC on a processor load and generates the two redundant
residues before loading the resultant RRNS data into the last level cache. Similarly, it generates
ECC upon a processor store (and the redundant residues are not stored into the main memory). �e
exact choice of ECC is not relevant to this article; any of the existing schemes [43] may be used.

4 CREEPY CORE
In this section, we present several considerations for the design of the CREEPY core.

4.1 Instruction Set Architecture (ISA)
�e description of CREEPY ISA is laid out in a manner similar to that of the MIPS ISA, for explanatory
purposes. To simplify instruction fetch and decode, all instructions are of �xed length; 32 bits. �e

34

1:6 B. Deng, S. Srikanth et al.

ISA expects 32 registers (R0-R31), with R0 hard-wired to zero, R30 being the link register and R31
storing the default next PC (= PC + 4). In our micro-architecture, each register is 49 bits long (i.e.,
it contains the RRNS redundant residues as well) and is sliced on a per-modulus (sub-core) basis.
�e data cache is also implemented in a similar manner, as it stores data in an RRNS format.

(1) R-Format (ADD/SUB/MUL)
�ese instructions assume that the destination operand as well as both source operands

are registers.
Opcode Src Reg1 Src Reg2 Dest Reg Reserved

6b 5b 5b 5b 11b

(2) I-Format (ADDI/SUBI/MULI)
For instructions that require compiler generated immediate literals, two new instructions

(that always occur in succession without exception) are de�ned. Telescopic op-codes are
employed to facilitate implementation of such set instructions. �e fundamental need for
the set instruction arises from the fact that literals are 49 bit RRNS values and would not
otherwise simply �t within a 32 bit �eld (next to an immediate instruction, for example).

Set123 sets the the �rst 3 residues of the immediate value into the �rst 3 sub-core slices
of the destination register and Set456 sets the remaining 3 residues of the immediate value
into the other three sub-core slices of the destination register.

Opcode Dest Reserved Residue3 Residue2 Residue1
11[2b] 5b 0[1b] 8b 8b 8b

Opcode Dest Residue6 Residue5 Residue4
11[2b] 5b 9b 8b 8b

For an example, consider the immediate instruction Addi R1, R2, 0x020202020202. A
CREEPY program would implement this instruction as follows:
(a) Set123 R3, 020202
(b) Set456 R3, 020202
(c) Add R1, R3, R2

(3) Branch
Opcode Reg1 Reg2 Reg3 Link Reserved

6b 5b 5b 5b 1b 10b

Recall that R0 = 0, R31 = PC + 4 and that R30 is the link register. A CREEPY branch
follows one of the following semantics:
(a) Reg1 = R0 and Reg3 = R0 and Link = 0: An unconditional branch that always jumps to

the address in Reg2.
(b) Link = 0: A conditional branch that jumps to the address in Reg2 (base) + Reg3 (o�set)

if Reg1 is 0. �is is otherwise known as a beqz instruction.
(c) Link = 1: A branch and link instruction to enable sub-routine calls and returns. �e

default next PC is stored into the link register and the program jumps to the address
in Reg2.

(4) Load/Store
Opcode Reg1 Reg2 Reg3 Reserved

6b 5b 5b 5b 11b

Reg3 is the destination for a load and is the source register for a store. �e source/desti-
nation address for a load/store is given by Reg1 (base) + Reg2 (o�set). Note that the memory
address is hereby stored in an RRNS format. Recall from Section 3 that e�ciently han-
dling RRNS addresses without conversion to binary is critical to application performance.
Tradeo�s and methodologies in this space have been handled by Srikanth et. al. [70].

35

Computationally Error Tolerant Computing 1:7

(5) RRNS Check

Opcode Reg1 Reserved
6b 5b 21b

Reg1 is the register that needs to be checked. Once an error is detected, the system
would try to correct it, for example, by performing the RRNS Single Error Detection and
Correction algorithm (Section 4.8). Candidate usage scenarios are discussed in Section 4.6
and evaluated in Section 6. Helper instructions such as mov, ret etc. also exist, but are
omi�ed from this description for brevity.

4.2 Error Model
First, we distinguish fault, error and failure as follows:

Fault. A single bit �ips, but is not stuck-at, i.e., only intermi�ent / transient faults are considered.
Causes may range from unreliable devices to low supply voltage to particle strikes to random noise
and any combination therein.

Error. One or more faults in a single residue that show up during a consistency check.
Failure. Error uncorrectable and no recovery mechanism, or error undetectable.
Faults may lead to errors which may lead to failures. We can guarantee the system is reliable if at

most one error per core occurs between two RIU checks. Multiple bit �ips are rare but this phenomenon
occurs if a circuit in the carry chain fails [40]. In our design, carry chains are limited to a residue as
there are no carries between residues. �erefore, any resulting multi-bit errors would be localized
to a single residue, which we can correct. If this RRNS system needs to detect and correct multiple
error residues, an extra checkpoint and rollback mechanism is necessary. However, based on
the discussion above, the case of multiple residues in error is extremely rare. So we ignore the
checkpoint mechanism design in current system and leave it to future work.

Redundancy in time, i.e., check at cycle x , check again at cycle y, check again at cycle z, and
vote, does not apply to this model as it is possible that the three checks su�er 3 independent 1
bit faults, rendering voting useless. �e transient clause in the model rules out stuck-at faults.
An implication of this is that we cannot achieve reliability by merely trading performance alone.
Additional resources in terms of spatial redundancy are necessary, which is exactly what has been
designed.

Di�erent components of the core are protected via specialized means that target each component.
�e guiding principle is to design a system that uses the more e�cient of RRNS/ECC based
redundancy based on the range and nature of data being protected. Where both techniques are
deemed insu�cient to prevent the fault from metastasizing into an error, and eventually into a
failure, the more conventional (and expensive) method: Triple Modular Redundancy (TMR), is
employed. An alternative is to prevent the fault from occurring in the �rst place by using high Vdd
(and/or circuit hardening). Choosing optimally between the la�er expensive techniques is beyond
the scope of this document but we assume that the RIU uses a high Vdd / hardened circuitry. We
assume that error in control signals manifest themselves as errors in data (for example, a control
error causing one of the subcores to operate on the wrong opcode will be caught as a data error);
however, one can potentially further improve the control signals’ integrity by using either TMR or
intelligent state assignment, and that the RIU uses a high Vdd / hardened circuitry.

4.3 Signed Number Representation
�ere are three competing ways of representing signed numbers, given an RRNS framework as
presented in Section 2.3. Each presents its set of trade-o�s, which we now detail.

36

1:8 B. Deng, S. Srikanth et al.

M is the product of all the non-redundant moduli (M = m1*m2*m3*m4) and MR is the product of
all the redundant moduli (MR = m5*m6).

(1) Complement M*MR Signed Representation
�e M*MR complement signed representation is depicted by Figure 3. To provide a few

examples, 0 is represented by 0, 1 is represented by 1, M
2 − 1 is represented by M

2 − 1, -1 is
represented by M ∗MR − 1 and −M

2 is represented by M ∗MR − M
2 . �is is similar to signed

binary representation. However, representing numbers in this manner breaks known error
correction algorithms[89].

+integers)integerserror+region

M/20 M*MR)M/2 M*MR
Fig. 3. Complement M*MR signed representation

(2) Complement M Signed Representation
�e M complement signed representation is depicted in Figure 4. �is is similar to the

M*MR complement representation, except that the wrap-around occurs at M as opposed to
M*MR. �is representation does not break error correction algorithms, provided that some
correction factors (scaling and o�set) are applied to the result of each arithmetic operation.
However, further analysis indicates that these correction factors require knowledge of the
signs of the operands, which are not trivial to determine like in binary. �e RRNS sign
determination is a time-consuming algorithm. Moreover. arithmetic operation over�ow
detection is unknown for this representation.

+integers)integers error+region

M/2=)M/20 M M*MR
Fig. 4. Complement M signed representation

(3) Excess-M2 Signed Representation
�e Excess-M2 signed representation is depicted in Figure 5. �e excess notation, some-

times known as o�set notation, merely shi�s each number by M
2 . To further elaborate, 0 is

represented by M
2 , 1 is represented by M

2 + 1 and -1 is represented by M
2 − 1. Similar to

the M Complement representation, the results of arithmetic operations must be o�set by a
correction factor before they can be corrected. However, these correction factors turn out
to be independent of the sign of the operands. We also �nd that this representation enables
simple algorithms for comparison (and thereby sign detection) and arithmetic operation
over�ow detection. In fact, these algorithms make use of a technique used in the error
correction algorithm itself. �ese algorithms are discussed in detail in Section 4.8.

!integers +integers error+region

M/2=00 M M*MR
Fig. 5. Excess -M/2 signed representation

We choose Excess-M2 to be the de facto signed representation scheme for CREEPY.
4.4 Optimized Multiplier Unit Design
Many workloads in the domains of multimedia, image processing and digital signal processing
are highly multiplication intensive [87] . Index-sum multiplication has been proposed in the past
[57, 58] to achieve multiplication via simple addition and table lookup operations, thereby rendering
it more e�cient than traditional binary multiplication provided the size of the LUT is not too large.
�e principle is analogous to using a logarithm operation, i.e., a multiplication can be achieved via
a table lookup, addition and a reverse table lookup, as summarized as follows for the product of
two numbers X and Y :

37

Computationally Error Tolerant Computing 1:9

Table 2. Mapping table of GF (59) with a primitive root of 11 (д = 11)
X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
α 0 7 2 14 42 9 10 21 4 49 1 16 25 17 44 28 48 11 34 56
X 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
α 12 8 47 23 26 32 6 24 22 51 53 35 3 55 52 18 37 41 27 5
X 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
α 40 19 57 15 46 54 45 30 20 33 50 39 38 13 43 31 36 29

Ex: X = 3, Y = 6 =⇒ αX = 2, αY = 9, whose sum is 11, which reverse maps to 18 and is indeed the desired product.

(1) Use a pre-de�ned mapping table to generate index (X) and index (Y).
(2) Compute the sum Z = index (X) + index (Y).
(3) Use a pre-de�ned reverse mapping table to return the product XY as reverse index (Z).

While realizing an LUT that is addressable by a 32-bit input is rather expensive, leveraging RNS
properties allows us to slice this table into a few tables with address sizes closer to 8 bits, as outlined
by Preethy et al. [57, 58] . We extend this idea into RRNS by adjusting the RRNS bases (cf. 4.5) to
be amenable to index-sum LUTs, the requirements for which, are summarized below.

Index-sum multiplication is based on the theory of Galois �elds, which can be classi�ed into 3
types: GF (p), GF (pm) and GF (2m), where, p is an odd prime number and m ∈ Z+. �e range of
integers that can be represented bijectively in Galois �elds, and the encoding methodology depends
on the GF type[58]: (We skip the methodology of deriving GF (pm) as we don’t utilize this for
CREEPY.)

GF (p) : Any integer x ∈ [1,p − 1] can be uniquely coded as a single integral index code α
by the relationship X = |дα |p , where α ∈ [0,p − 2], and д is a primitive root such that
|дp−1 |p = 1. See Table 2 for an example.

GF (2m) : Any integer x ∈ [1, 2m − 1] can be coded as a triple integral index code < α , β ,γ >
by the relationshipX = 2α |5β (−1)γ |2m , where α ∈ [0,m−1], β ∈ [0, 2m−2−1] andγ ∈ [0, 1].
See Table 3 for an example.

�erefore, the relative preference of GF types are GF (p) > GF (pm) > GF (2m) as they require 1,
2 and 3 index codes respectively. Furthermore, a smaller value of p andm leads to a smaller LUT.
�ese considerations impact the choice of RRNS bases, as discussed in Section 4.5 / Table 4.

By using the index-sum technique in conjunction with RRNS, we greatly simplify the complexity
of multiplication. Index-sum multiplication can be e�ciently performed via a simple addition
and two modest table lookup operations. We achieve a reduction in ALU gate count using this
approach by about 87% when compared to using a traditional multiplier in RRNS, which itself
reduces the gate count by 52% when compared to a traditional non-error-correcting binary ALU,
thereby realizing area, energy and reliability improvements, as we demonstrate in Section 6.

4.5 Selecting RRNS Bases
Watson [89] used the base set (199, 233, 194, 239, 251, 509) in his paper. However, the range rendered
by this set is larger than 231 but smaller than that of a 32-bit unsigned integer: 232. Furthermore,
these bases are not amenable to designing index-sum based multipliers, as discussed in Section 4.4.
�ese limiting necessary and su�cient conditions can be summarized as follows:

(1) Each pair of basesmi ,mj must be relatively prime. (For RRNS representation [89].)
(2) maxn+1≤i≤n+r MR

mi
≥ max1≤i≤nmi

(3) MR ≥ max1≤i,j≤nmimj
(4) MR , 2mimj − n1mi − n2mj ; 1 ≤ i , j ≤ n; 1 ≤ n1 ≤ mj − 1; 1 ≤ n2 ≤ mi − 1
(5) MR ≥ 2∑n

i=1 (mi − 1) +∑n+r
i=n+1 (mi − 1). (For RRNS single error correction [89].)

38

1:10 B. Deng, S. Srikanth et al.

Table 3. Mapping table of GF (26)
X 1 2 3 4 5 6 7 8 9 10 11 12

α, β, γ 0,0,0 1,0,0 0,3,1 2,0,0 0,1,0 1,3,1 0,10,1 3,0,0 0,6,0 1,1,0 0,5,1 2,3,1
X 13 14 15 16 17 18 19 20 21 22 23 24

α, β, γ 0,15,0 1,10,1 0,4,1 4,0,0 0,12,0 1,6,0 0,7,1 2,1,0 0,13,0 1,5,1 0,14,1 3,3,1
X 25 26 27 28 29 30 31 32 33 34 35 36

α, β, γ 0,2,0 1,15,0 0,9,1 2,10,1 0,11,0 1,4,1 0,8,1 5,0,0 0,8,0 1,12,0 0,11,1 2,6,0
X 37 38 39 40 41 42 43 44 45 46 47 48

α, β, γ 0,9,0 1,7,1 0,2,1 3,1,0 0,14,0 1,13,0 0,13,1 2,5,1 0,7,0 1,14,1 0,12,1 4,3,1
X 49 50 51 52 53 54 55 56 57 58 59 60

α, β, γ 0,4,0 1,2,0 0,15,1 2,15,0 0,5,0 1,9,1 0,6,1 3,10,1 0,10,0 1,11,0 0,1,1 2,4,1
X 61 62 63

α, β, γ 0,3,0 1,8,1 0,0,1
Ex: X = 3, Y = 6 map to, respectively, < 0, 3, 1 >, < 1, 3, 1 >, whose sum results in < 1, 6, 2 >. Since γ ∈ [0, 1], the

modulo sum results in < 1, 6, 0 >, which reverse maps to 18 and is the desired product.

Table 4. New base sets that satisfy all conditions listed in Section 4.5. For reference, the range of Watson’s
base set (8-8-8-8-8-9) is 2,149,852,322, and 232 is 4,294,967,296.

Subcore bits Total bits Range Possible base sets Bases’ format
6-8-7-7-8-8 44 82,600,832 (61,149,128,71,179,181) (p,p,27,p,p,p)
7-8-7-8-8-8 46 467,921,792 (97,223,128,169,239,241) (p,p,27,132,p,p)
7-8-7-8-8-9 47 729,405,056 (113,239,128,211,251,263) (p,p,27,p,p,p)
8-8-7-8-8-8 47 635,871,872 (151,167,128,197,211,223) (p,p,27,p,p,p)
7-8-8-7-9-9 48 430,002,432 (89,233,256,81,283,293) (p,p,27,34,p,p)
8-8-8-8-8-9 49 2,149,852,322 (199,233,194,239,251,509) Watson[89]**

9-6-9-5-10-10 49 251,904,512 (269,59,512,31,521,523) (p,p,29,p,p,p)
9-7-8-8-9-9 50 1,230,080,256 (433,81,256,137,439,443) (p,34,27,p,p,p)

9-7-9-7-10-10 52 1,719,885,312 (367,113,512,81,521,523) (p,p,29,34,p,p)
9-8-8-9-9-10 53 7,891,035,392 (421,211,256,347,503,521) (p,p,28,p,p,p)
9-9-8-9-9-9 53 7,710,332,672 (277,317,256,343,409,421) (p,p,28,73,p,p)

** these bases do not satisfy index sum constraint.

(6) |m1m2−m3m4 | = 1; also known as theK ,K−1 property. (For RRNS fractional multiplication
[89].)

(7) mi ∈{x | x is either (p) prime, (pm) a power of prime, or (2m) a power of 2}. Recall that the
relative order of preference is p > pm > 2m , and that smaller bases result in smaller ROMs.
(For index sum multiplication (Section 4.4).)

�e proofs of Condition (1)-(6) are available in Waston′s thesis[89] and Condition (7) is based
on the theory of Galois �elds which has been discussed in Section 4.4. We limit our analysis to
(n, r) = (4, 2) for simplicity and �nd bases that satisfy the conditions summarized above, while
keeping the overhead to a minimum. Table 4 lists several such possibilities. (61, 149, 128, 71, 179,
181) is the set of bases that o�ers least overhead, whereas (421, 211, 256, 347, 503, 521) on the other
hand, o�ers a range superior to 232 at additional overhead.
4.6 RRNS Check Insertion Strategies
Given that the CREEPY microarchitecture supports the error model outlined in Section 4.2, it
is necessary to carefully insert RRNS check instructions as they have a direct impact on the
performance-energy-reliability metrics of the core. In this section, we outline the following check
insertion schemes.

39

Computationally Error Tolerant Computing 1:11

4.6.1 Periodic check. Insert a single check instruction a�er every n instructions. When n = ∞,
this is an unchecked core and when n = 1, every instruction is checked. Note that lowering the
value of n increases the check insertion frequency, raising performance overhead. While increased
check insertion frequency typically provides increased reliability, one must be vary of the fact that
the check instruction itself is of non-zero latency (cf. Section 4.8), meaning that, the longer the core
spends in consistency checking, the longer it leaves its state vulnerable for errors to creep in. On
the other hand, not checking every instruction also increases the probability of errors manifesting
into multiple residues, leading to core failure.

4.6.2 Pipelined check. Insert a pipelined check that checks n instructions a�er every n instruc-
tions. �is approach has the performance advantage of amortizing the latency of RRNS check via
pipelining as well as the reliability advantage of being able to increase state coverage of consistency
check.

4.6.3 StateTable guided adaptive check. We de�ne a bookkeeping entity known as
StateTable in Section 5 to maintain temporal information of the vulnerability of processor state.
Whenever the probability of a register exceeds a certain threshold, an RRNS check is inserted for
that register. Naturally, this can be extended to insert pipelined checks if more than one register
is in need of a check. �is StateTable itself is assumed to be an error-free entity that can either
be implemented in so�ware or hardware. Like the other two schemes, this insertion scheme can
be implemented by the compiler or by the runtime (hardware or so�ware); however, it is likely
that utilizing a runtime component for this purpose would yield greater accuracy, which trans-
lates to improved e�ciency and reliability, although subject to the overhead the StateTable itself
introduces.

Irrespective of the check strategy, we acknowledge that the following need to be error-free
for correct execution; however, for the purposes of this simulation, we ignore their overhead-
s/implications on control �ow by assuming periodic checkpointing for potential rollbacks: (1)
E�ective address of each memory access (RRNS check), (2) Instruction contents (standard ECC
check), and, (3) Main memory contents (standard ECC check). For a low-overhead checkpoint
mechanism candidate, one can use an incremental checkpoint scheme to save energy and reduce
storage overhead, when compared to using full checkpoints alone. �e incremental checkpoints
only record the modi�ed entries from the last checkpoint (the last checkpoint could either be a full
checkpoint or an incremental checkpoint). Once the rollback operation is necessary, the system
can then use the last full checkpoint and the subsequent incremental checkpoints to recovery the
machine state. A detailed trade-o� analysis of the size, frequency, reliability and energy of such a
scheme is beyond the scope of this paper.
4.7 Multi-Domain Voltage Supply
�e error distribution for each domain of a CREEPY core, viz., computational logic, SRAM cells and
RIU logic, are di�erent. In an SRAM device, any fault occurring in one of its transistors gets latched,
thereby resulting in an error. To contrast, glitches in logic transistors get masked if the glitch does
not occur close to the clock edge. Also, to avoid having to ’check a check instruction’, we assume
the RIU logic is error-free protected via TMR, hardened logic, and/or higher signal energies, with
the la�er su�cient to model the energy e�ects of the former. Given that the vulnerability of these
domains increases from computational logic to SRAM cells to RIU logic, it is ine�cient to assume a
uniformly high signal energy across these domains. We model this phenomena by independent
voltage rails for each of these domains. Shimazaki [68] and Rusu [64] proposed some multi-voltage
domain designs. �e voltage domains referred to in CREEPY are coarse-grained (module-based),
rendering the implementation feasible.

40

1:12 B. Deng, S. Srikanth et al.

Table 5. Error Correction table of RRNS System with Moduli (3,5,2,7,11,13)
∆m5,∆m6 i′ ϵ ∆m5,∆m6 i′ ϵ ∆m5,∆m6 i′ ϵ ∆m5,∆m6 i′ ϵ ∆m5,∆m6 i′ ϵ

1 , 10 4 6 4 , 5 1 1 5 , 12 3 1 7 , 7 4 3 9 , 3 2 2
2 , 10 2 3 4 , 6 4 4 6 , 1 3 1 7 , 8 1 2 10 , 3 4 1
2 , 12 4 6 4 , 7 2 1 6 , 4 2 4 8 , 1 2 2
3 , 3 1 1 4 , 11 4 5 6 , 5 4 3 8 , 4 4 2
3 , 9 4 5 5 , 8 4 4 7 , 2 4 2 8 , 10 1 2
3 , 12 2 3 5 , 9 2 1 7 , 6 4 2 9 , 1 4 1

4.8 RIU Algorithms
�e algorithm for single error correction was originally given by Watson [89]. However, RNS
renders comparison and arithmetic over�ow detection to be a non-trivial exercise. We present
algorithms to perform these RIU functions by augmenting the consistency checking algorithm.
�is way, no extra hardware is warranted beyond that required by the error check.

4.8.1 Single Error Detection and Correction Algorithm. �e single error detection and
correction algorithm proposed by Watson [89] is based on an error correction table. �e working
of this algorithm for a system with 4 non-redundant moduli (m1,m2,m3,m4) and 2 redundant
moduli (m5,m6), for any given integer X (< M =m1m2m3m4) is as follows: (a) Use a base-extension
algorithm [25, 52, 89] to compute |X ′ |m5 and |X ′ |m6 , where |X ′ |m5 and |X ′ |m6 are the outputs of
the parallel RIU base-extension algorithm. �e inputs to the RIU base-extension algorithm are
the outputs of non-redundant subcores: |X |m1 , |X |m2 , |X |m3 and |X |m4 , where |X |m = X mod m;
the computational output of the subcore with mi modulus. (b) For i = 5, 6: compute ∆mi =

|X ′ |mi − |X |mi . (c) A non-zero di�erence indicates the presence of an error. �is pair of di�erences
indexes into an entry of a pre-computed (�xed) error correction table, which contains the index of
the residue that is in error and a correction o�set that needs to be added to that residue to correct
said error.

�e RRNS check instruction performs this RRNS Single Error Detection and Correction algorithm.
For the error detection step, the system would perform (a) and (b) to the get values of ∆m5 and
∆m6. For the error correction step (if necessary), it performs (c). Analysis of the algorithm reveals
that the error detection step would take 8 cycles while the correction step takes 2 cycles. �erefore,
once the system inserts an RRNS check instruction, the �rst step is to execute the 8-cycle error
detection procedure. If no error is found, then this RRNS check instruction is complete and it takes
8 cycles in total. But if an error is detected, then we need 2 more cycles for the RRNS correction
operation to complete (resulting in 10 cycles in total).

For ease of presentation, we present such an error correction table for a smaller (toy) set of RRNS
base moduli in Table 5. �e total entries in such a table is at most 2∑4

i=1 (mi − 1). For the remainder
of this section, these set of bases are used for explanatory purposes.

4.8.2 Unsigned Number Overflow Detection. In the absence of any error or over�ow,
adding 2 unsigned RRNS numbers results in both ∆m5 and ∆m6 being zero. As has been just
explained, presence of an error is handled by the error correction table. In the absence of error,
we observe that any over�ow manifests itself as a �xed index into the error correction table, with
the entry not corresponding to any error. Table 6 provides some examples of this observation.
While computation of the deltas is most e�cient using a base-extension algorithm, we use Chinese
Remainder �eorem(CRT) or the Mixed-Radix Conversion (MRC) method to �rst convert the
RRNS number to binary, before computing deltas. �is is solely for explanatory purposes; binary
conversion is not actually necessary to detect over�ow.

Iterating through all possible combinations of numbers and operations, we observe that the
value pair of (∆m5, ∆m6) is �xed. Moreover, (∆m5, ∆m6) = (10,11) is not a legitimate address of the

41

Computationally Error Tolerant Computing 1:13

Table 6. Unsigned Number Overflow Examples in RRNS with Moduli (3,5,2,7,11,13)
X+Y X RRNS Y RRNS X+Y RRNS CRT/MRC |X ′ |m5, |X ′ |m6 ∆m5, ∆m6

2+209 (2,2,0,2,2,2) (2,4,1,6,0,1) (1,1,1,1,2,3) (1, 1, 1, 1) ⇔ 1 |1 |11=1, |1 |13=1 10 11
3+209 (0,3,1,3,3,3) (2,4,1,6,0,1) (2,2,0,2,3,4) (2, 2, 0, 2) ⇔ 2 |2 |11=2, |2 |13=2 10 11

… … … … … … 10 11
209+209 (2,4,1,6,0,1) (2,4,1,6,0,1) (1,3,0,5,0,2) (1, 3, 0, 5) ⇔ 208 |208 |11=10, |208 |13=0 10 11

Table 7. Excess-M2 Overflow Examples for addition of two positive numbers in RRNSwithModuli (3,5,2,7,11,13)
X+Y X RRNS Y RRNS X+Y RRNS Add Correction Factors CRT/MRC |X ′ |m5, |X ′ |m6 ∆m5,∆m6

1+104 (1,1,0,1,7,2) (2,4,1,6,0,1) (0,0,1,0,7,3) (0,0,0,0,1,2) (0, 0, 0, 0) ⇔ 0 |0 |11=0, |0 |13=0 10 11
2+104 (2,2,1,2,8,3) (2,4,1,6,0,1) (1,1,0,1,8,4) (1,1,1,1,2,3) (1, 1, 1, 1) ⇔ 1 |1 |11=1, |1 |13=1 10 11

… … … … … … … 10 11

Table 8. Excess-M2 Overflow Examples for addition of two negative numbers in RRNS with Moduli
(3,5,2,7,11,13)

X+Y X RRNS Y RRNS X+Y RRNS Add Correction Factors CRT/MRC |X ′ |m5 , |X ′ |m6 ∆m5 ,∆m6
-1-105 (2,4,0,6,5,0) (0,0,0,0,0,0) (2,4,0,6,5,0) (2,4,1,6,10,12) (2, 4, 1, 6) ⇔ 209 |209 |11=0, |209 |13=1 1 2
-3-104 (0,2,0,4,3,11) (1,1,1,1,1,1) (1,3,1,5,4,12) (1,3,0,5,9,11) (1, 3, 0, 5) ⇔ 208 |208 |11=10, |208 |13=0 1 2

… … … … … … … 1 2

If#|X|mi#<=mi#*1#for#1<=#i#<=6

Use#|X|mi for#1<=#i <=4#to#compute#|X|’m5 and#|X|’m6

Set#|X|mi#=#0

N

Y

Calculate#|Delta|mc=#||X|’mc * |X|mc|mc for#5<=#c#<=6#

Replace#incorrect|X|mc with#
corresponding# |X|’mc

Correct# the#residue#value#via#
Error#Correction# Table(ECT)

Exit

Both* |Delta|mc=*0
One*|Delta|mc !=*0 Both* |Delta|mc !=*0&*

valid*addr of*ECT

Exit

|Delta|m5*=*10&*
|Delta|m6=*11

|Delta|m5*=*1&*
|Delta|m6=*2

Exit

Exit Exit
No*Error One*Error*in*a

Redundant*
Residue

One*Error*in*a
NonERedundant*

Residue

Overflow Underflow

Fig. 6. Single error detection and correction algorithm with overflow/underflow detection

error correction table (Table 5), thus enabling a distinction between an error and an over�ow. �is
approach, however, does not apply to multiplication.

4.8.3 Signed Number Overflow Detection. Recall from Section 4.3 that CREEPY uses the
Excess-M2 signed representation. We discuss the two sources of over�ow independently:

(1) Add two positive numbers. Table 7 provides a few examples illustrating the algorithm
(Correction factors are explained in detail in Section 4.8.5). �e 1+ 104 in the �rst column is
represented in decimal. A�er Excess-M2 mapping, the computing equation is transformed
to 106+ 209 since M

2 = 105 for the toy set of moduli. �erefore, the X RRNS value is the the
RRNS of 106 and Y RRNS value is the the RRNS of 209. We observe that the pair (∆m5,∆m6)
remains at a �xed value (10,11).

(2) Add two negative numbers. Similarly, examples for adding two negative numbers are shown
in Table 8. In this case, we observe that the pair (∆m5,∆m6) is �xed to (1,2).

Note that neither (10, 11) nor (1, 2) are legitimate addresses in Table 5, thereby enabling a distinction
between an error and an over�ow. However, while this method works for both addition and
subtraction, it does not hold for detection of multiplication over�ow as the delta-pair is not constant
and sometimes indexes into a legal error correction table entry.

Figure 6 shows the overview of the whole algorithm.

42

1:14 B. Deng, S. Srikanth et al.

+/-/* +/- Consistency Check

Correction FactorRRNS_X

RRNS_Y

Error?
Overflow?

(a) Signed Overflow Detection

- Consistency Check

RRNS_X

RRNS_Y

Error?
X>=Y?

(b) Signed Comparison
Fig. 7. Signed Overflow Detection and Comparison

We observe that the described algorithm works in a similar manner even with the base sets in
Table 4. E.g. Waston’s bases (199,233,194,239,251,509), an over�ow results in a delta-pair of (77, 289),
whereas an under�ow results in (174, 220). Both these pairs do not index into legitimate entries of
the error correction table for these set of bases (cf. Appendix E, Watson [89]).

4.8.4 Comparison. Comparison is an important operation because of its use in determining
control �ow. In a manner similar to over�ow detection, we explore potential algorithms to perform
RRNS comparison without incurring unnecessary hardware overhead.

Jen-shiun et al. [9] and Omondi [52] proposed number comparison methods for residue numbers
based on parity bits. However, a prerequisite of these parity comparison methods is that all moduli
are supposed to be odd (in addition to being pair-wise relatively prime). In CREEPY, one of the
non-redundant moduli is even (to enable fast fractional multiplication [89]), therefore this approach
is not suitable.

Instead, we propose leveraging the error check algorithm itself to check for an over�ow post
a subtraction: To compare X and Y , perform X − Y and derive the delta-pair (∆m5, ∆m6). �en,
X ≥ Y i� the delta-pair is (0, 0) (i.e., no over�ow) and X < Y i� the delta-pair is (174, 220) (i.e.,
X − Y results in an under�ow).

�is new residue number comparison method can be used for both unsigned and Excess-M2
signed numbers. It is easy to understand that this idea is suitable for unsigned residue numbers: if
X < Y , then X − Y < [0,M), thereby resulting in an under�ow. For an Excess-M2 signed number
X, an injective mapped residue number can be de�ned as follows: Xmapped =

M
2 + X . �erefore,

X ≥ Y i� Xmapped ≥ Ymapped , which reduces to an unsigned comparison. A caveat to note is
that correction factors should not be added for a comparison operation. �ese are summarized in
Figures 7a and 7b.

4.8.5 Correction Factors. In this section, we are concerned with the addition, subtraction and
multiplication operations on two numbers that do not generate any over�ow. Recall from Section
4.3 that CREEPY uses the Excess-M2 notation, which means that there is a bijective mapping from
any number x such that −M

2 < x < M
2 to x + M

2 . Because of this o�set, arithmetic operations results
need to be re-adjusted using what we term as correction factors. [However, this has nothing to do
with the RRNS error correction operation.]

Addition Consider the addition of two numbers x and y. To represent the mapping, de�ne a
and b such that 0 ≤ a,b < M

2 so that there is no over�ow.
Case 1: x ,y ≥ 0

Consider x = a and y = b. �e sum x +y can be represented for each subcore 1 ≤ i ≤ n + r
as follows: ���� |M2 + a |mi + |

M
2 + b |mi

����mi
=
��� |M |mi + |a + b |mi

���mi
(1a)

= |a + b |mi f or 1 ≤ i ≤ n (1b)

However, the expected addition result is:
����M2 + a + b

����mi
=
���� |M2 |mi + |a + b |mi

����mi
(2)

It follows that:

43

Computationally Error Tolerant Computing 1:15

(1) 1 ≤ i ≤ n andmi is odd: Examining equations 1b and 2 imply that no correction factor
is necessary.

(2) 1 ≤ i ≤ n and mi is even: Examining equations 1b and 2 implies that a constant
correction factor of |M2 |mi needs to be added to the result.

(3) n + 1 ≤ i ≤ n + r : Examining equations 1a and 2 imply that a constant correction
factor of |M2 |mi needs to be subtracted from the result.

Case 2: x ,y < 0
Se�ing x = −a and y = −b, and re-working equations similar to Equations 1a, 1b and 2
result in correction factors that are identical to Case 1.

Case 3: x > 0, y < 0 (Without loss of generality.)
Se�ing x = a and y = −b, and re-working equations similar to Equations 1a, 1b and 2 result
in correction factors that are identical to Case 1.

Subtraction Due to the symmetric and o�set based nature of the Excess-M2 representation,
we again present the working of just one of the cases; without loss of generality: x = a and
y = b. �en, x − y becomes:

���� |M2 + a |mi − |
M
2 + b |mi

����mi
= |a − b |mi (3)

However, the expected subtraction result is:
����M2 + a − b

����mi
=
���� |M2 |mi + |a − b |mi

����mi
(4)

From examining equations 3 and 4, it follows that:
(1) 1 ≤ i ≤ n andmi is odd: No correction factor is necessary.
(2) 1 ≤ i ≤ n andmi is even: A constant correction factor of |M2 |mi needs to be added to

the result.
(3) n + 1 ≤ i ≤ n + r : A constant correction factor of |M2 |mi needs to be added to the result.

Multiplication Again, for brevity, we only present the case where two positive integers are
multiplied; without loss of generality: x = a and y = b; the product xy becomes:

���� |M2 + a |mi |
M
2 + b |mi

����mi
=
����� |
M2

4 +
(a + b)M

2 |mi + |ab |mi

�����mi
(5)

However, the expected multiplication result is:
����M2 + ab

����mi
=
���� |M2 |mi + |ab |mi

����mi
(6)

As residues are typically 8-bit wide, consider a 511 entry LUT per subcore that stores
the following:

LUT (s) =
�����
M2

4 +
(s − 1) (M)

2
�����mi

(7)

From examining equations 5, 6 and 7, it follows that:
(1) 1 ≤ i ≤ n andmi is odd: No correction factor is necessary.
(2) 1 ≤ i ≤ n andmi is even: �e correction factor can be e�ected by computing s = a +b

and then subtracting LUT (s) from the result of the multiplier.
(3) n + 1 ≤ i ≤ n + r : �e correction factor can be e�ected by computing s = a + b and

then subtracting LUT (s) from the result of the multiplier.
�e correction factors for the addition and subtraction operations require a single, con-

stant addition/subtraction operation, whereas for multiplication, 2 additions/subtractions
and a modest table lookup are required. Another advantage of the schemes presented here
is that sign determination is not necessary and that they can be performed at the subcore
level, without the involvement of the RIU.

44

1:16 B. Deng, S. Srikanth et al.

5 EVALUATION METHODOLOGY
To measure the performance-energy-reliability trade-o� of a CREEPY core, we augment a stochastic
fault injection mechanism into a cycle-accurate in-order trace-based simulator. We abstract the
notion of using next-generation devices operating at low signal energies (Es) and the resulting
interaction with the kT noise �oor into Pe , the probability of an error occurring in a transistor
state in any given cycle. Es , provided as an input to the simulation, is a measure of the signal
energy at the input of a transistor; Pe is the probability of a fault occurring at the output of a
transistor in any given cycle. �e relationship of Es and Pe can be de�ned by the following relation:
Pe = exp (−EskT). From Section 4.7, these inputs are vectors as they denote the signal energies and
error probabilities for each voltage domain, however, for explanatory purposes, we present them
as scalars for the remainder of this section. Also input to the simulator is the check insertion
strategy, as discussed in Section 4.6. Because we are evaluating a very di�erent number system,
we simulated an unpipelined microarchitecture with no branch prediction and a 2-level memory
hierarchy (LLC-DRAM, with latencies of 12 cycles and 100 cycles for LLC hit and miss respectively)
to maintain our primary focus in this paper. Adding more features to our design has been le� as
future work.

We �rst introduce a series of error events and their probabilities.
Pe Probability of an error occurring in a transistor state in any given cycle. �is is provided

as an input to the simulation, as just discussed.
Padd Probability of at least a single error in an adder (each sub-core has an adder). If there are

Nadd transistors in an adder, the probability of each of these transistors being free of error
is (1 − Pe)

Nadd . �erefore, Padd=1-(1 − Pe)
Nadd . Similarly, Psub and Pmul are calculated.

For multi-cycle operations, this de�nition holds as long as the state of each transistor is
used exactly once for the operation. �is is true for the said operators. Note that this is a
conservative (pessimistic) estimate in our evaluation because we ignore any error masking
that may potentially occur.

PRi Probability of at least 1 error being present in a slice (sub-core/residue) of register Ri
since its last write. To compute this, we devise a StateTable , the ith entry of which holds
the tuple (P , cycle), where, P is the probability of Ri having atleast 1 error being present in
the corresponding residue upon its most recent update at cycle cycle . �is StateTable is
updated for each register write.

For example, consider the register R0. 1) At cycle 0, the default value of R0 tuple is
(P=0, cycle=0). 2) At cycle 10, assume that we have an ADD instruction: ADD R0, R1,
R2, and that it is the �rst instruction writing to R0. We then update the tuple value to
(Error Probability ADD, 10). It is necessary to update the P value here because the error
probability of this ADD instruction should be taken into account. P value would then be
set back to 0 once an RRNS check is inserted for that register and no error is detected,
and then set the current system cycle value to the cycle �eld. �is way, the P �eld in the
StateTable always re�ects the probability of that register of having at least 1 error being
present in one of its residues, given its most recent update at the cycle �eld.

Assuming an SRAM implementation of 8-bit wide Ri , the number of transistors is
8 × 6 = 48. �e probability of Ri being error free is subject to two probabilities: (1)
probability of an error-free write, (P1 = 1 − StateTable[Ri].P) and, (2) probability of no
error creeping into it since its last write (P2 = (1 − P ′e)48(c−StateT able[Ri].cycle)), where, c is
the current cycle and P ′e is the probability of an error occurring in the state of an SRAM
transistor. Due to the nature of an SRAM device, any fault occurring in one of its transistors
gets latched, resulting in a higher probability of an error (when compared with glitches in

45

Computationally Error Tolerant Computing 1:17

logic transistors ge�ing masked if the glitch does not occur close to the clock edge). As
such, we assume P ′e = 100Pe . Pu�ing it all together, we have PRi = 1 − P1 ∗ P2.

PLOAD X Probability of at least 1 error being present in the loaded data of address X . �is is
analogous to PRi , with the extended StateTable storing an entry for each cache line. As we
assume a perfect o�-chip (ECC protected) main memory, cache miss repairs are initialized
with a zero probability in error, and cache replacement victims’ entries are evicted from
the StateTable . Finally, PLOAD X encapsulates the probability of an error in the implicit
computation of the address X itself (from its base and o�set) during the execution of the
load, in addition to the probability of an error in the loaded data from the cache line.

PSC Probability of at least 1 error occurring in a sub-core from the last time it was checked.
To illustrate, consider the following add instruction: ADD R3,R2,R1. �en, at the end of
instruction, PSC = 1 − (1 − Padd) (1 − PR2) (1 − PR1).

PC Probability of exactly 1 error occurring in a CREEPY core from the last time it was checked.
�is translates to exactly 1 sub-core being in error (where the sub-core error itself may
be of multi-bit form; RRNS can tolerate multi-bit �ips within a single residue). �erefore,
PC = 6C1 × PSC (1 − PSC)5, where the combinatorial choose operator nCr enumerates the
number of ways in which r items can be chosen from n distinct items.

P0
C Probability of no error in a CREEPY core from the last time it was checked. P0

C = 6C0 ×
(1 − PSC)6 = (1 − PSC)6.

P
f ail
C Probability of a CREEPY core failing at any given cycle, since the last time it was checked.

�e current version of the CREEPY micro-architecture is unable to correct more than 1
error occurring in the core, and assumes a recovery mechanism such as checkpointing is
in place. As such, we deem ≥ 2 errors in the core as amounting to a failure. �erefore,
P
f ail
C =

∑
2≤r ≤6 6Cr × PrSC (1 − PSC)6−r = 1 − P0

C − PC .

Note that the computation of these error probabilities is done a�er every instruction (irrespective
of the check insertion strategy) for the purposes of bookkeeping such as StateTable update and to
estimate the probability of a failure P

f ail
C,i at each time step ti . We use a typically used reliability

metric, Mean Time Between Failure (MTBF) [77], which can be de�ned as follows: MTBF =
Total Cycles

CPU Frequency × ∑i P f ailC,i

. �e subscript i in P
f ail
C,i represents the ith instruction of the instruction

stream. MTBF also corresponds to mean time to checkpoint recovery.

6 SIMULATION RESULTS
6.1 Signal Energy Limits
From an independent set of simulations of a non-error-correcting core operating on binary data,
we �nd that the minimal signal energy required for ensuring its reliable operation is 48kT . In our
previous design of an error correcting RRNS core [11], we assumed a single voltage domain across
computational logic, SRAM cells and RIU logic. Together with a traditional multiplier (i.e., without
index-sum), a pipelined check insertion strategy (with a frequency of 5 instructions) and a 16MB
LLC, the result is that we can tolerate gate signal energies of 42 − 43kT , as shown in Figure 8.

However, given the dissimilarity in error distribution across computation, SRAM and RIU (Section
4.7), we consider independent voltage domains for these. For simplicity, we conservatively set the
RIU gate signal energy to be 48kT (i.e., same as that required for a non-error correcting binary
core), although it can be potentially lowered as its functionality is a subset of that of a binary core.
We �nd that the relative impact of energy savings in the RIU is rather limited (Section 6.5), and
therefore restrict the RIU gate signal energy to 48kT in our evaluations.

46

1:18 B. Deng, S. Srikanth et al.

1.00E-‐05
1.00E-‐03
1.00E-‐01
1.00E+01
1.00E+03
1.00E+05
1.00E+07
1.00E+09
1.00E+11
1.00E+13
1.00E+15
1.00E+17
1.00E+19
1.00E+21
1.00E+23
1.00E+25
1.00E+27
1.00E+29
1.00E+31

46 45 44 43 42 41 40 39
M
TB
F(
Se
co
nd
s)

Signa	 Energy	 per	 Gate(KT)

Perlbench

gobmk

hmmer

Matmul

mcf

fft

dct

gcc

bzip2

miniFE

miniXyce

Fig. 8. Reliability when a single voltage domain is used.
Table 9. Sensitivity of MTBF (seconds) to benchmarks and gate signal energies of computational logic,

SRAM cells and RIU logic. For example, 30-43-48 denotes the gate signal energy for computational logic to be
30kT , SRAM cells to be 43kT , and RIU logic to be 48kT .

Benchmarks 36-43-48 35-43-48 34-43-48 33-43-48 32-43-48 31-43-48 30-43-48 29-43-48 28-43-48 27-43-48
perlbench 1.70E+17 2.29E+16 3.10E+15 4.20E+14 5.69E+13 7.70E+12 1.04E+12 1.41E+11 1.91E+10* 2.62E+09
gobmk 1.07E+17 1.44E+16 1.95E+15 2.64E+14 3.58E+13 4.85E+12 6.55E+11 8.87E+10 1.22E+10* 1.97E+09
hmmer 4.08E+16 5.53E+15 7.48E+14 1.01E+14 1.37E+13 1.85E+12 2.51E+11 3.40E+10* 6.23E+09 9.69E+08
matmul 1.08E+16 1.47E+15 1.99E+14 2.69E+13 3.64E+12 4.93E+11 6.66E+10 9.02E+09* 1.22E+09 2.76E+08
mcf 1.81E+17 2.44E+16 3.31E+15 4.47E+14 6.06E+13 8.20E+12 1.11E+12 1.50E+11 2.03E+10* 2.80E+09
�t 7.63E+14 1.03E+14 1.40E+13 1.89E+12 2.56E+11 3.47E+10* 4.69E+09 6.35E+08 1.86E+08 2.32E+07
dct 1.33E+15 1.80E+14 2.44E+13 3.30E+12 4.47E+11 6.05E+10 8.18E+09* 1.11E+09 3.11E+08 4.02E+07
gcc 1.41E+17 1.91E+16 2.59E+15 3.50E+14 4.75E+13 6.42E+12 8.68E+11 1.18E+11 1.60E+10* 2.37E+09
bzip2 1.73E+17 2.34E+16 3.17E+15 4.29E+14 5.81E+13 7.86E+12 1.06E+12 1.44E+11 1.95E+10* 2.65E+09
miniFE 6.94E+14 9.39E+13 1.27E+13 1.72E+12 2.33E+11 3.15E+10* 4.26E+09 5.77E+08 1.69E+08 2.11E+07

miniXyce 1.09E+16 1.47E+15 1.99E+14 2.69E+13 3.64E+12 4.93E+11 6.66E+10 9.02E+09* 2.04E+09 3.06E+08
* We use these signal energies for the remainder of this paper, as they render reasonable reliability.

We abstract these voltage domains as a triplet; for example, 30 − 43 − 48 denotes the gate signal
energy for computational logic to be 30kT , SRAM cells to be 43kT , and RIU logic to be 48kT . For
the purposes of this evaluation, we assume a target MTBF of 1E + 10 seconds (over 300 years) and
�nd that the gate signal energy for computational logic can be lowered all the way to 28 − 31kT ,
depending upon the benchmark, as shown in Table 9.

Given these minimum signal energies, we evaluate the performance, e�ciency and reliability
of various core con�gurations in Sections 6.2, 6.3 and 6.4 respectively. �e core con�gurations
presented are as follows:

Binary A non-error-correcting core operating on binary data. �is is the baseline and requires
signal energies of at least 48kT in order to achieve reasonable reliability.

RNS A non-error-correcting core operating on RNS data. In other words, an RRNS core
without redundant subcores and error correction capabilities.

RRNS pipe5 An error correcting RRNS core with a pipelined check insertion strategy (with a
frequency of 5 instructions), as was determined as the most optimal strategy in our previous
RRNS core design [11].

Index-sum pipe5 Similar to RRNS pipe5, except that the traditional multiplier is replaced
with an index-sum multiplier.

RRNS Adapt 1e-9 An error correcting RRNS core with an adaptive check insertion strategy
(with an error probability threshold of 1e−9. We found that 1e−9 was the optimal threshold
obtained via simulation for target MTBF/signal energy).

Index-sum Adapt 1e-9 Similar to RRNS Adapt 1e-9 that uses an index-sum multiplier.

6.2 Performance
Figure 9 presents the performance of various core con�gurations listed in Section 6.1, normalized
to that of a non-error-correcting binary core.

47

Computationally Error Tolerant Computing 1:19

130.29%
116.74% 115.44% 116.89%

124.17%
109.92% 108.59%

120.64%
129.41%

114.47%
125.60% 119.29%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
110%
120%
130%
140%
150%
160%
170%

perlbench gobmk hmmer matmul mcf fft dct bzip2 gcc miniFE miniXyce average

Binary

RNS

RRNS_pipe5

Index-‐sum_pipe5

RRNS_Adapt_1e-‐9

Index-‐sum_Adapt_1e-‐9

Fig. 9. Performance of various core configurations, normalized to an non-error-correcting binary core

48.49% 46.60% 48.16%
43.13%

48.21%

31.10% 34.50%

49.47% 47.27%

30.61%

45.19% 42.97%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

perlbench gobmk hmmer matmul mcf fft dct bzip2 gcc miniFE miniXyce average

Binary

RNS

RRNS_pipe5

Index-‐sum_pipe5

RRNS_Adapt_1e-‐9

Index-‐sum_Adapt_1e-‐9

Fig. 10. Energy Comparison for Di�erent Strategies

63.17%
54.41% 55.59%

50.41%
59.86%

34.18% 37.46%

59.68% 61.17%

35.04%

56.76%
51.61%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
110%
120%
130%

perlbench gobmk hmmer matmul mcf fft dct bzip2 gcc miniFE miniXyce average

Binary

RNS

RRNS_pipe5

Index-‐sum_pipe5

RRNS_Adapt_1e-‐9

Index-‐sum_Adapt_1e-‐9

Fig. 11. EDP Comparison for Di�erent Strategies

�ere is an inherent performance degradation in running binary-optimized code on an (R)RNS-
based core because position-based bit manipulation techniques are expensive in (R)RNS, however,
this is limited to about 20% on average. Introducing error correction may further degrade perfor-
mance if naive or static check insertion strategies are used. �e overhead due to error correction is
amortized when the check insertion strategy is adaptive instead.

6.3 Energy
�e primary concern of CREEPY core design is reducing the core energy overhead. Figure 10 shows
the normalized energy consumption of the aforementioned con�gurations.

�e non-error-correcting binary core requires high gate signal energies in order to be reliable.
Given the low-bit-width and carry-free nature of RNS arithmetic, RNS based cores are inherently
more energy e�cient than their binary counterparts. When e�cient error correction is introduced,
further energy savings can be achieved as the supply voltage can be turned down while still
maintaining reliable functionality. We ensure that the overhead of error correction is minimal by
using an adaptive check insertion strategy. Finally, using index-sum multipliers enables further
energy savings as they are more e�cient than traditional multipliers (savings of over 3× for
multiplication intensive benchmarks and over 2.3× on average).

6.4 Energy Delay Product(EDP)
Figure 11 shows the Energy Delay Product (EDP) of these core con�gurations, normalized to
that of a non-error-correcting binary core. With the exception of arithmetic intensive workloads,
RNS cores typically have a higher EDP than binary cores. However, via e�cient error correction,
our RRNS cores show signi�cantly improved EDP. Speci�cally, by utilizing our best optimization
scheme (index-sum multiplier and adaptive check insertion), we see EDP bene�ts of about 2× on
average, or about 3× for multiplication intensive workloads.

48

1:20 B. Deng, S. Srikanth et al.

80%

90%

100%

perlbench gobmk hmmer matmul mcf fft dct gcc bzip2 miniFE miniXyce average

Binary

Computation

Zero

Fig. 12. The Potential of RIU Energy Optimization

6.5 Energy Potential of RIU Optimizations
As described in Sections 4.7 and 6.1, we conservatively choose the gate signal energy for RIU logic
to be that necessary for reliable operation of a Turing complete non-error-correcting binary core,
i.e., 48kT . One of the reasons for this is to side-step the issue of ’checking the checker’. However, if
we were to deploy self-checking logic or some other optimizations in the RIU, it may no longer
be necessary to use a high voltage supply for the RIU domain. In this limits study, we evaluate
3 possibilities of the gate signal energy to RIU logic: Binary - 48kT , Computation - same as that
of RRNS subcore computational logic, Zero - 0kT . From an Amdahl’s law perspective, we �nd
that optimizing RIU logic has limited impact on core energy, as shown in Figure 12, thanks to our
judicious RIU usage via adaptive check insertion.

7 RELATEDWORK
RNS and RRNS �e energy e�cient properties of RNS due to its low-bit-width operations and
absence of carries across residues has found applications in the digital signal processing (DSP)
[10, 14, 60] domain. Furthermore, the representability of high bit-width integers as a tuple-of-resides
has been leveraged by the cryptography (RSA) [4, 28, 94] community. Anderson [1] proposed an
architecture and ISA for an RNS co-processor designed to run datapath operations in tandem with
a general-purpose processor running binary instructions, where the primary role of the general
purpose processor is to handle control �ow. �e RNS co-processor uses an accumulator based ALU
and does not support caching or computational error correction (RRNS). Furthermore, it requires a
conversion to binary (and vice-versa) for comparison operations, which is expensive. Clearly, our
CREEPY architecture is signi�cantly more e�cient. A unique feature of their ISA is their ability to
encode instructions targeting two ALUs simultaneously. But this can easily be extended to our
architecture and enable such Superscalar-like capabilities if need be.

Chiang et al. [9] provide RNS algorithms for comparison and over�ow detection, but assume all
bases to be odd and do not consider error correction. Similarly, Preethy et al. [57, 58] integrate
index-sum multiplication into RNS, but do not consider its impact on the properties of RRNS bases
critical to CREEPY.

Ever since Watson and Hastings [25, 89, 90] introduced RRNS as an e�cient means for computa-
tional error correction, there has been a signi�cant body of research [3, 5, 8, 13, 17, 21, 22, 24, 32,
38, 39, 42, 53, 59, 61, 67, 71–73, 75, 76, 78–80, 91–93, 95] that strives to improve upon it. �ese are
orthogonal to CREEPY, and further such algorithmic research can be used to optimize aspects of
the core itself, such as the RIU.

Computational Error Correction Standard error correcting codes (ECC)[43] have already
been adopted into modern memory systems. �ese codes accommodate errors occurring in storage
and communication/network tra�c, but are not able to protect computational logic. �e naive
approach to computational error correction is triple modular redundancy (TMR)[86], requiring over
a 200% overhead in area and energy for single error correcting capability. Several techniques in the
form of arithmetic codes such as AN codes[6, 18, 19, 41, 66, 88], self-checking[30, 33, 44, 48–50, 84]
and self-correcting[15, 20, 26, 37, 45, 55, 62, 63, 74, 83] adders and multipliers have since been devised.

49

Computationally Error Tolerant Computing 1:21

RRNS_pipe5

TMR

DIVA

SITR

IBM_S/390_G5

No	 Protection

RRNS_best

Timing	 Speculation

RESO

REDWC

RETWV

SCCSA

SHA

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

350.00%

0% 100% 200% 300% 400% 500% 600% 700%

Ar
ea
	

EDP	

RESO[54], REDWC[31], RETWV[27], SCCSA[85], SHA[56], DIVA[2], SITR[47], Timing Speculation[16, 23]
Fig. 13. First order comparison of area overhead and energy-delay product (EDP) of various mechanisms for
computational error correction, depicting the superiority of RRNS. Computational error correction techniques
use a combination of spatial and temporal redundancy techniques. While temporal redundancy allows for a
low area overhead, they su�er from a significant performance penalty. Timing speculation techniques seem
more e�icient than RRNS, however, their error model assumes all bit errors manifest as circuit timing errors,
which is not su�icient to work with ultra low energy logic devices.

Orthogonally, proposals employ redundancy at a higher granularity, such as timing speculation
(wherein error correction capability is limited to circuit timing violations)[16, 23], partial pipeline
replication[2] or checkpoint-rollback-recovery such as those in IBM Power8 processors[29]. While
these are more e�cient than naive TMR, they come with limitations on their error model, or, their
area overheads are still over 100% and/or incur a signi�cant performance penalty, owing to the fact
that they leverage temporal redundancy in an e�ort to minimize area overhead[69]

Figure 13 summarizes some of these techniques in comparison with RRNS. We refer the interested
reader to Srikanth et al.[69] for a more detailed survey on some of these non-residue techniques,
but the takeaway is that RRNS is generally considered superior in terms of capability and e�ciency
for computational error resilience.

Approaches that employ timing speculation[16, 23] may seem superior to RRNS at �rst glance.
However, the error model that can be supported by an RRNS error correcting microarchitecture is
orthogonal to theirs, if not broader. For example, razor[16] uses conventional transistors, therefore
lowering Vdd lowers MOSFET switching speed, resulting in a frequency drop, which could cause
setup time violations that they handle via a delayed latch mechanism. �ey assume that any
error manifests itself as a timing error. Similarly, decor[23] uses a delayed commit approach (with
rollback support) to handle violations in timing margins. However, with emerging devices (Section
1), Vdd can be lowered to few tens of millivolts without frequency loss, meaning that operating at
the resultant thermal noise �oor leads to stochastic, intermi�ent bit �ips, which cannot be captured
as circuit timing errors. Unlike such approaches, a CREEPY core can not only tolerate such errors
in the data path, but also in the control path between memory accesses.

In terms of being able to tolerate control path errors, approaches such as DIVA[2] that replicate
parts of the pipeline are capable. �eir design provides recovery by having a simple core recalculate
results of an out-of-order core. In this approach, the simple core is assumed to be error-free. �is is
similar to a ”double-modular-redundancy” approach with a rad-hard node, implying a relatively
high overhead. Furthermore, if the rad-hard simple core is instead prone to error, checkpoint and
re-execute methods would need to be employed, similar to the IBM POWER7/8 processors[29]. On
the other hand, a CREEPY core is able to tolerate errors in its redundant as well as non-redundant
computations.

50

1:22 B. Deng, S. Srikanth et al.

8 CONCLUSION
�e advent of next generation device concepts such as tunneling FETs and ferroelectric/negative-
capacitance FETs enables reduction of supply voltage to few tens of millivolts without degradation
in switching speed. However, as a result of operating close the the kT noise �oor, computational
logic is subject to intermi�ent, stochastic errors. �e RRNS representation is a promising approach
towards using such ultra low power devices, by employing e�cient computational error correction.

In this paper, we design a Compuationally-Redundant, Energy-E�cient core, including the
microarchitecture, ISA and RRNS centered algorithms. We elucidate several novel optimizations
and RRNS-based design considerations to demonstrate signi�cant improvements over a non-error-
correcting binary core.

9 ACKNOWLEDGMENT
We sincerely thank the anonymous reviewers of the TACO review process for their constructive
feedback on this research.

REFERENCES
[1] Daniel Anderson. 2014. Design and Implementation of an Instruction Set Architecture and an Instruction Execution

Unit for the REZ9 Coprocessor System. M.S. �esis, U of Nevada LV (2014).
[2] Todd M Austin. 1999. DIVA: A reliable substrate for deep submicron microarchitecture design. In Microarchitecture,

MICRO-32. Proceedings. 32nd Annual International Symposium on. IEEE, 196–207.
[3] Jean-Claude Bajard, Julien Eynard, and Nabil Merkiche. 2016. Multi-fault A�ack Detection for RNS Cryptographic

Architecture. In Computer Arithmetic (ARITH), 2016 IEEE 23nd Symposium on. IEEE, 16–23.
[4] J-C Bajard and Laurent Imbert. 2004. A full RNS implementation of RSA. IEEE Trans. Comput. 53, 6 (2004), 769–774.
[5] Ferruccio Barsi and Piero Maestrini. 1974. Error detection and correction by product codes in residue number systems.

IEEE Trans. Comput. 100, 9 (1974), 915–924.
[6] David T Brown. 1960. Error detecting and correcting binary codes for arithmetic operations. IRE Transactions on

Electronic Computers 3 (1960), 333–337.
[7] YG.C. Cardarilli and M. Re ; R. Lojacono. 1998. RNS-to-binary conversion for e�cient VLSI implementation. IEEE

Transactions on Circuits and Systems I: Fundamental �eory and Applications 45 (1998), 667–669.
[8] Chip-Hong Chang, Amir Sabbagh Molahosseini, Azadeh Alsadat Emrani Zarandi, and Tian Fa� Tay. 2015. Residue

number systems: A new paradigm to datapath optimization for low-power and high-performance digital signal
processing applications. IEEE circuits and systems magazine 15, 4 (2015), 26–44.

[9] Jen-Shiun Chiang and Mi Lu. 1991. Floating-point numbers in residue number systems. Computers & Mathematics
with Applications 22, 10 (1991), 127–140.

[10] Rooju Chokshi, Krzysztof S Berezowski, Aviral Shrivastava, and Stanislaw J Piestrak. 2009. Exploiting residue number
system for power-e�cient digital signal processing in embedded processors. In Proceedings of the 2009 international
conference on Compilers, architecture, and synthesis for embedded systems. ACM, 19–28.

[11] B. Deng, S. Srikanth, E. R. Hein, P. G. Rabbat, T. M. Conte, E. DeBenedictis, and J. Cook. 2016. Computationally-
redundant energy-e�cient processing for y’all (CREEPY). In IEEE International Conference on Rebooting Computing
(ICRC). 1–8.

[12] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. 1974. Design of ion-implanted MOSFET’s
with very small physical dimensions. IEEE Journal of Solid-State Circuits 9, 5 (Oct 1974), 256–268.

[13] Elio D Di Claudio, Gianni Orlandi, and Francesco Piazza. 1993. A systolic redundant residue arithmetic error correction
circuit. IEEE Trans. Comput. 42, 4 (1993), 427–432.

[14] Elio D Di Claudio, Francesco Piazza, and Gianni Orlandi. 1995. Fast combinatorial RNS processors for DSP applications.
IEEE transactions on computers 44, 5 (1995), 624–633.

[15] Shlomi Dolev, Sergey Frenkel, Dan E Tamir, and Vladimir Sinelnikov. 2013. Preserving Hamming Distance in Arithmetic
and Logical Operations. Journal of Electronic Testing 29, 6 (2013), 903–907.

[16] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham, Conrad Ziesler, David Blaauw, Todd
Austin, Krisztian Flautner, and others. 2003. Razor: A low-power pipeline based on circuit-level timing speculation. In
Microarchitecture,MICRO-36. Proceedings. 36th Annual IEEE/ACM International Symposium on. IEEE, 7–18.

[17] M Etzel and W Jenkins. 1980. Redundant residue number systems for error detection and correction in digital �lters.
IEEE Transactions on Acoustics, Speech, and Signal Processing 28, 5 (1980), 538–545.

51

Computationally Error Tolerant Computing 1:23

[18] Christof Fetzer, Ute Schi�el, and Martin Süßkraut. 2009. AN-encoding compiler: Building safety-critical systems with
commodity hardware. In International Conference on Computer Safety, Reliability, and Security. Springer, 283–296.

[19] Ph Forin. 1989. Vital coded microprocessor principles and application for various transit systems. IFAC Control,
Computers, Communications (1989), 79–84.

[20] Swaroop Ghosh, Patrick Ndai, and Kaushik Roy. 2008. A novel low overhead fault tolerant Kogge-Stone adder using
adaptive clocking. In Design, Automation and Test in Europe, 2008. DATE’08. IEEE, 366–371.

[21] Vik Tor Goh and Mohammad Umar Siddiqi. 2008. Multiple error detection and correction based on redundant residue
number systems. IEEE Transactions on Communications 56, 3 (2008).

[22] Oded Goldreich, Dana Ron, and Madhu Sudan. 1999. Chinese remaindering with errors. In Proceedings of the thirty-�rst
annual ACM symposium on �eory of computing. ACM, 225–234.

[23] Meeta S Gupta, Krishna K Rangan, Michael D Smith, Gu-Yeon Wei, and David Brooks. 2008. DeCoR: A delayed commit
and rollback mechanism for handling inductive noise in processors. In High Performance Computer Architecture, HPCA,
IEEE 14th International Symposium on. IEEE, 381–392.

[24] Nor Zaidi Haron and Said Hamdioui. 2011. Redundant residue number system code for fault-tolerant hybrid memories.
ACM Journal on Emerging Technologies in Computing Systems (JETC) 7, 1 (2011), 4.

[25] C. W. Hastings. 1966. Automatic detection and correction of errors in digital computers using residue arithmetic. In
Region Six Annu. Conf. IEEE, 429–464.

[26] Yuang-Ming Hsu and EE Swartzlander. 1992. Time redundant error correcting adders and multipliers. In Defect and
Fault Tolerance in VLSI Systems, 1992. Proceedings., 1992 IEEE International Workshop on. IEEE, 247–256.

[27] Yuang-Ming Hsu and EE Swartzlander. 1992. Time redundant error correcting adders and multipliers. In Defect and
Fault Tolerance in VLSI Systems, Proceedings., International Workshop on. IEEE, 247–256.

[28] Ching Yu Hung and Behrooz Parhami. 1994. Fast RNS division algorithms for �xed divisors with application to RSA
encryption. Inform. Process. Le�. 51, 4 (1994), 163–169.

[29] IBM. 2014. IBM Power System E880 server, an IBM POWER8 technology-based system, addresses the requirements of
an industry-leading enterprise class system. (2014).

[30] Barry W Johnson, James H Aylor, and Haytham H Hana. 1988. E�cient use of time and hardware redundancy for
concurrent error detection in a 32-bit VLSI adder. IEEE journal of solid-state circuits 23, 1 (1988), 208–215.

[31] Barry W Johnson, James H Aylor, and Haytham H Hana. 1988. E�cient use of time and hardware redundancy for
concurrent error detection in a 32-bit VLSI adder. journal of solid-state circuits 23, 1 (1988), 208–215.

[32] Rajendra S. Ka�i. 1996. A new residue arithmetic error correction scheme. IEEE transactions on computers 45, 1 (1996),
13–19.

[33] Osnat Keren, Ilya Levin, Vladimir Ostrovsky, and Beni Abramov. 2008. Arbitrary error detection in combinational
circuits by using partitioning. In Defect and Fault Tolerance of VLSI Systems, 2008. DFTVS’08. IEEE International
Symposium on. IEEE, 361–369.

[34] Asif Islam Khan, Korok Cha�erjee, Juan Pablo Duarte, Zhongyuan Lu, Angada Sachid, Sourabh Khandelwal, Ra-
mamoorthy Ramesh, Chenming Hu, and Sayeef Salahuddin. 2016. Negative capacitance in short-channel FinFETs
externally connected to an epitaxial ferroelectric capacitor. IEEE Electron Device Le�ers 37, 1 (2016), 111–114.

[35] Asif Islam Khan and Sayeef Salahuddin. 2015. 4 Extending CMOS with negative capacitance. CMOS and Beyond: Logic
Switches for Terascale Integrated Circuits (2015), 56–76.

[36] Asif I Khan, Chun W Yeung, Chenming Hu, and Sayeef Salahuddin. 2011. Ferroelectric negative capacitance MOSFET:
Capacitance tuning & antiferroelectric operation. In Electron Devices Meeting (IEDM), 2011 IEEE International. IEEE,
11–3.

[37] EV Krekhov, Al-r A Pavlov, AA Pavlov, PA Pavlov, DV Smirnov, AN Tsar’kov, PA Chistopol’skii, AV Shandrikov,
BA Sharikov, and DA Yakimov. 2008. A method of monitoring execution of arithmetic operations on computers in
computerized monitoring and measuring systems. Measurement Techniques 51, 3 (2008), 237–241.

[38] Hari Krishna, Bal Krishna, Kuo-Yu Lin, and Jenn-Dong Sun. 1994. Computational Number �eory and Digital Signal
Processing: Fast Algorithms and Error Control Techniques. Vol. 6. CRC Press.

[39] Hari Krishna, K-Y Lin, and J-D Sun. 1992. A coding theory approach to error control in redundant residue number
systems. I. �eory and single error correction. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing 39, 1 (1992), 8–17.

[40] Daniel Lipetz and Eric Schwarz. Self Checking in Current Floating-Point Units. In Proceedings of the 2011 IEEE 20th
Symposium on Computer Arithmetic (ARITH ’11). IEEE Computer Society, Washington, DC, USA, 73–76.

[41] Chao-Kai Liu. 1972. Error-correcting-codes in computer arithmetic. Technical Report. DTIC Document.
[42] Hao-Yung Lo and Ting-Wei Lin. 2013. Parallel Algorithms for Residue Scaling and Error Correction in Residue

Arithmetic. Wireless Engineering and Technology 4, 04 (2013), 198.
[43] Florence Jessie MacWilliams and Neil James Alexander Sloane. 1977. �e theory of error-correcting codes. Elsevier.

52

1:24 B. Deng, S. Srikanth et al.

[44] Daniel Marienfeld, Egor S Sogomonyan, Vitalij Ocheretnij, and M Gossel. 2005. New self-checking output-duplicated
booth multiplier with high fault coverage for so� errors. In Test Symposium, 2005. Proceedings. 14th Asian. IEEE, 76–81.

[45] J Mathew, S Banerjee, P Mahesh, DK Pradhan, AM Jabir, and SP Mohanty. 2010. Multiple bit error detection and
correction in GF arithmetic circuits. In Electronic System Design (ISED), 2010 International Symposium on. IEEE, 101–106.

[46] A. McMenamin. 2013. �e End of Dennard Scaling. (2013).
[47] Elias Mizan, Tileli Amimeur, and Margarida F Jacome. 2007. Self-imposed temporal redundancy: An e�cient technique

to enhance the reliability of pipelined functional units. In Computer Architecture and High Performance Computing,
SBAC-PAD. 19th International Symposium on. IEEE, 45–53.

[48] Michael Nicolaidis. 2003. Carry checking/parity prediction adders and ALUs. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 11, 1 (2003), 121–128.

[49] Michael Nicolaidis and Hakim Bederr. 1994. E�cient implementations of self-checking multiply and divide arrays. In
European Design and Test Conference, 1994. EDAC, �e European Conference on Design Automation. ETC European Test
Conference. EUROASIC, �e European Event in ASIC Design, Proceedings. IEEE, 574–579.

[50] Michael Nicolaidis and RO Duarte. 1998. Design of fault-secure parity-prediction booth multipliers. In Design,
Automation and Test in Europe, 1998., Proceedings. IEEE, 7–14.

[51] Eric B Olsen. 2015. Introduction of the Residue Number Arithmetic Logic Unit With Brief Computational Complexity
Analysis (Rez-9 so� processor). Whitepaper, Digital System Research (2015).

[52] Amos Omondi and Benjamin Premkumar. Residue Number Systems: �eory and Implementation. Imperial College
Press.

[53] Glenn A. Orton, Lloyd E. Peppard, and Sta�ord E. Tavares. 1992. New fault tolerant techniques for residue number
systems. IEEE transactions on computers 41, 11 (1992), 1453–1464.

[54] Janak H. Patel and Leona Y. Fung. 1982. Concurrent error detection in ALU’s by recomputing with shi�ed operands.
IEEE Trans. Computers 31, 7 (1982), 589–595.

[55] Song Peng and Rajit Manohar. 2005. Fault tolerant asynchronous adder through dynamic self-recon�guration. In
Computer Design: VLSI in Computers and Processors, 2005. ICCD 2005. Proceedings. 2005 IEEE International Conference
on. IEEE, 171–178.

[56] Song Peng and Rajit Manohar. 2005. Fault tolerant asynchronous adder through dynamic self-recon�guration. In
Computer Design: VLSI in Computers and Processors, ICCD. Proceedings.International Conference on. IEEE, 171–178.

[57] AP Preethy and D Radhakrishnan. 1999. A 36-bit balanced moduli MAC architecture. In Circuits and Systems, 1999.
42nd Midwest Symposium on, Vol. 1. IEEE, 380–383.

[58] AP Preethy and D Radhakrishnan. 2000. RNS-based logarithmic adder. IEE Proceedings-Computers and Digital
Techniques 147, 4 (2000), 283–287.

[59] Vijaya Ramachandran. 1983. Single residue error correction in residue number systems. IEEE transactions on computers
32, 5 (1983), 504–507.

[60] J Ramirez, A Garcia, S Lopez-Buedo, and A Lloris. 2002. RNS-enabled digital signal processor design. Electronics Le�ers
38, 6 (2002), 266–268.

[61] �ammavarapu RN Rao. 1970. Biresidue error-correcting codes for computer arithmetic. IEEE Transactions on computers
100, 5 (1970), 398–402.

[62] Wenjing Rao and Alex Orailoglu. 2008. Towards fault tolerant parallel pre�x adders in nanoelectronic systems. In
Design, Automation and Test in Europe, 2008. DATE’08. IEEE, 360–365.

[63] Wenjing Rao, Alex Orailoglu, and Ramesh Karri. 2006. Fault identi�cation in recon�gurable carry lookahead adders
targeting nanoelectronic fabrics. In Test Symposium, 2006. ETS’06. Eleventh IEEE European. IEEE, 63–68.

[64] Stefan Rusu. 2010. Multi-Domain Processors Design Overview. ISCA tutorial on Multi-domain Processors: Challenges,
Design Methods, and Recent Developments (June 2010).

[65] Sayeef Salahuddin and Supriyo Da�a. 2008. Can the subthreshold swing in a classical FET be lowered below 60
mV/decade?. In Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 1–4.

[66] Ute Schi�el, André Schmi�, Martin Süßkraut, and Christof Fetzer. 2010. ANB-and ANBDmem-encoding: detecting
hardware errors in so�ware. In International Conference on Computer Safety, Reliability, and Security. Springer, 169–182.

[67] Avik Sengupta and Balasubramaniam Natarajan. 2013. Performance of systematic RRNS based space-time block codes
with probability-aware adaptive demapping. IEEE Transactions on Wireless Communications 12, 5 (2013), 2458–2469.

[68] Y. Shimazaki, R. Zlatanovici, and B. Nikolic. 2004. A shared-well dual-supply-voltage 64-bit ALU. Journal of Solid-State
Circuits 39, 3 (2004), 494–500.

[69] Sriseshan Srikanth, Bobin Deng, and �omas M Conte. 2016. A Brief Survey of Non-Residue Based Computational
Error Correction. arXiv preprint arXiv:1611.03099 (2016).

[70] S. Srikanth, P. G. Rabbat, E. R. Hein, B. Deng, T. M. Conte, E. DeBenedictis, J. Cook, and M Frank. Memory System
Design for Ultra Low Power, Computationally Error Resilient Processor Microarchitectures. In International Symposium
on High Performance Computer Architecture (HPCA),2018. [to appear].

53

Computationally Error Tolerant Computing 1:25

[71] C-C Su and H-Y Lo. 1990. An algorithm for scaling and single residue error correction in residue number systems.
IEEE Trans. Comput. 39, 8 (1990), 1053–1064.

[72] J-D Sun and Hari Krishna. 1992. A coding theory approach to error control in redundant residue number systems.
II. Multiple Error detection and correction. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing 39, 1 (1992), 18–34.

[73] J-D Sun, Hari Krishna, and KY Lin. 1992. A superfast algorithm for single-error correction in RRNS and hardware
implementation. In Circuits and Systems, 1992. ISCAS’92. Proceedings., 1992 IEEE International Symposium on, Vol. 2.
IEEE, 795–798.

[74] Yan Sun, Minxuan Zhang, Shaoqing Li, and Yali Zhao. 2010. Cost e�ective so� error mitigation for parallel adders by
exploiting inherent redundancy. In IC Design and Technology (ICICDT), 2010 IEEE International Conference on. IEEE,
224–227.

[75] Andraos Sweidan and Ahmad A Hiasat. 2001. On the theory of error control based on moduli with common factors.
Reliable computing 7, 3 (2001), 209–218.

[76] Nicholas S Szabo and Richard I Tanaka. 1967. Residue arithmetic and its applications to computer technology. McGraw-
Hill.

[77] J. Tan and O. Rosen. 2004. Process for determining competing cause event probability and/or system availability during
the simultaneous occurrence of multiple events. (April 22 2004). h�ps://www.google.com/patents/US20040078167 US
Patent App. 10/272,156.

[78] Yangyang Tang, Emmanuel Boutillon, Christophe Jégo, and Michel Jézéquel. 2010. A new single-error correction
scheme based on self-diagnosis residue number arithmetic. In Design and Architectures for Signal and Image Processing
(DASIP), 2010 Conference on. IEEE, 27–33.

[79] �ian Fa� Tay and Chip-Hong Chang. 2014. A new algorithm for single residue digit error correction in Redundant
Residue Number System. In Circuits and Systems (ISCAS), 2014 IEEE International Symposium on. IEEE, 1748–1751.

[80] �ian Fa� Tay and Chip-Hong Chang. 2016. A non-iterative multiple residue digit error detection and correction
algorithm in RRNS. IEEE transactions on computers 65, 2 (2016), 396–408.

[81] T. N. �eis. 2012. (keynote) in quest of a fast, low-voltage digital switch. ECS Transactions 45, 6 (2012), 3–11.
[82] T. N. �eis and P. M. Solomon. 2010. In �est of the Next Switch: Prospects for Greatly Reduced Power Dissipation in

a Successor to the Silicon Field-E�ect Transistor. Proc. IEEE 98, 12 (Dec 2010), 2005–2014.
[83] Mojtaba Valinataj and Saeed Safari. 2007. Fault tolerant arithmetic operations with multiple error detection and

correction. In Defect and Fault-Tolerance in VLSI Systems, 2007. DFT’07. 22nd IEEE International Symposium on. IEEE,
188–196.

[84] Dilip P Vasudevan and Parag K Lala. 2005. A technique for modular design of self-checking carry-select adder. In
Defect and Fault Tolerance in VLSI Systems, 2005. DFT 2005. 20th IEEE International Symposium on. IEEE, 325–333.

[85] Dilip P Vasudevan, Parag K Lala, and James Patrick Parkerson. 2007. Self-checking carry-select adder design based on
two-rail encoding. IEEE Transactions on Circuits and Systems I: Regular Papers 54, 12 (2007), 2696–2705.

[86] John Von Neumann. 1956. Probabilistic logics and the synthesis of reliable organisms from unreliable components.
Automata studies 34 (1956), 43–98.

[87] E George Walters III, Mark G Arnold, and Michael J Schulte. 2003. Using truncated multipliers in DCT and IDCT
hardware accelerators. In Optical Science and Technology, SPIE’s 48th Annual Meeting. International Society for Optics
and Photonics, 573–584.

[88] Ute Wappler and Christof Fetzer. 2007. Hardware failure virtualization via so�ware encoded processing. In Industrial
Informatics, 2007 5th IEEE International Conference on, Vol. 2. IEEE, 977–982.

[89] R. W. Watson. 1965. Error detection and correction and other residue interacting operations in a residue redundant
number system. Univ. California, Berkeley.

[90] Richard W Watson and Charles W Hastings. 1966. Self-checked computation using residue arithmetic. Proc. IEEE 54,
12 (1966), 1920–1931.

[91] Hanshen Xiao, Hari Krishna Garg, Jianhao Hu, and Guoqiang Xiao. 2016. New Error Control Algorithms for Residue
Number System Codes. ETRI Journal 38, 2 (2016), 326–336.

[92] Li Xiao and Xiang-Gen Xia. 2015. Error correction in polynomial remainder codes with non-pairwise coprime moduli
and robust Chinese remainder theorem for polynomials. IEEE Transactions on Communications 63, 3 (2015), 605–616.

[93] SS-S Yau and Yu-Cheng Liu. 1973. Error correction in redundant residue number systems. IEEE Trans. Comput. 100, 1
(1973), 5–11.

[94] Sung-Ming Yen, Seungjoo Kim, Seongan Lim, and Sang-Jae Moon. 2003. RSA speedup with Chinese remainder theorem
immune against hardware fault cryptanalysis. IEEE Transactions on computers 52, 4 (2003), 461–472.

[95] Pengsheng Yin and Lei Li. 2013. A new algorithm for single error correction in RRNS. In Communications, Circuits and
Systems (ICCCAS), 2013 International Conference on, Vol. 2. IEEE, 178–181.

54

Chapter 5

Memory Addressing for an RRNS-based
Architecture

This paper is to appear in the proceedings of the 24th IEEE International Symposium on High
Performance Computer Architecture (HPCA).

55

Memory System Design for Ultra Low Power, Computationally Error Resilient
Processor Microarchitectures

Sriseshan Srikanth∗, Paul G. Rabbat†, Eric R. Hein∗, Bobin Deng∗, Thomas M. Conte∗,
Erik DeBenedictis‡, Jeanine Cook‡ and Michael P. Frank‡

∗Georgia Institute of Technology. Email: {seshan}{ehein6}{bdeng}{tom}@gatech.edu
†Intel Corporation. Email: paul.g.rabbat@intel.com

‡Sandia National Laboratories. Email: {epdeben}{jeacook}{mpfrank}@sandia.gov

Abstract—Dennard scaling ended a decade ago. Energy
reduction by lowering supply voltage has been limited because
of guard bands and a subthreshold slope of over 60mV/decade
in MOSFETs. On the other hand, newly-proposed logic devices
maintain a high on/off ratio for drain currents even at
significantly lower operating voltages. However, such ultra low
power technology would eventually suffer from intermittent
errors in logic as a result of operating close to the thermal
noise floor. Computational error correction mitigates this issue
by efficiently correcting stochastic bit errors that may occur in
computational logic operating at low signal energies, thereby
allowing for energy reduction by lowering supply voltage to
tens of millivolts.

Cores based on a Redundant Residual Number System
(RRNS), which represents a number using a tuple of smaller
numbers, are a promising candidate for implementing energy-
efficient computational error correction. However, prior RRNS
core microarchitectures abstract away the memory hierarchy
and do not consider the power-performance impact of RNS-
based memory addressing. When compared with a non-error-
correcting core addressing memory in binary, naive RNS-
based memory addressing schemes cause a slowdown of over
3x/2x for inorder/out-of-order cores respectively. In this paper,
we analyze RNS-based memory access pattern behavior and
provide solutions in the form of novel schemes and the resulting
design space exploration, thereby, extending and enabling a
tangible, ultra low power RRNS based architecture.

I. INTRODUCTION

We hit the power wall in 2005, which meant that
increasing clock frequency was no longer a technique to
improve performance. Single core performance plateaued as
a result of the power wall although there is more instruction
level parallelism (ILP) inherent in programs, waiting to
be exploited [11], [35], [58]. The community has since
then adopted multiple cores and specialized accelerators
to make better use of Moore’s law, albeit at the cost of
programmability. The phenomenon of transistors retaining
their power density as they scaled down (known as Dennard
Scaling [22]) ended a decade ago [69], meaning that adding
more and more transistors no longer improved performance
without also significantly increasing energy consumption. A
sure-shot mitigation technique is to strive to improve the
fundamental single core power-performance profile from the
ground up.

Dynamic power scales proportionately with frequency
and with the square of operating voltage, therefore, lower-
ing Vdd is more beneficial. Although the theoretical lower
limit for Vdd for inverter functionality is 2 kT

q (or about
36mV) [49], [96], [110], there are challenges to operating
at this level [13]. With conventional MOSFETs, reducing
supply voltage below ˜0.7V results in increased switching

This work was approved for public release by Sandia National Labora-
tories SAND2017-12733.

delay, irrespective of channel length. Coupled with their
gentle subthreshold slope (> 60mV/decade), the upshot is
that Vdd reduction actually causes higher leakage energy,
negating the benefits of the reduction in the first place and
furthermore forcing a significantly slower clock rate.

Theis and Solomon [105] suggest that new device con-
cepts [76] within the purview of two-dimensional lithogra-
phy technology, such as tunneling FETs, enable reduction of
the 1

2CV 2 energy to small multiples of kT , without resulting
in a significantly low switching speed [104] when compared
to MOSFETs. Similarly, research on ferroelectric transistors,
aka negative capacitance FETs (NCFETs) demonstrates a
sub-60mV/dec slope as well as a higher drive current [50]–
[52], [87], both of which are necessary in rendering Vdd
reduction beneficial to energy reduction without significantly
sacrificing performance, when compared to MOSFETs.

These next generation devices are fast switching even at
few tens of millivolts, but as a result, are vulnerable to
thermal noise perturbations. This translates into intermittent,
stochastic bit errors in logic. With signal energies approach-
ing the kT noise floor, future architectures will need to treat
reliability as a first class citizen, by employing efficient
computational error correction.

A. Computational Error Correction
Standard error correcting codes (ECC) [66] have already

been adopted into modern memory systems. These codes
accommodate errors occurring in storage and communica-
tion/network traffic, but are not able to protect computational
logic. The naive approach to computational error correction
is triple modular redundancy (TMR) [109], requiring over
a 200% overhead in area and energy for single error cor-
recting/double error detecting (SECDED) capability. Several
techniques in the form of arithmetic codes such as AN
codes [9], [28], [29], [62], [88], [111], self-checking [45],
[48], [67], [73]–[75], [107] and self-correcting [25], [32],
[41], [55], [68], [79], [83], [84], [95], [106] adders and
multipliers have since been devised. Orthogonally, there have
been proposals that employ redundancy at a higher granular-
ity, such as timing speculation (wherein error correction ca-
pability is limited to circuit timing violations) [26], [37], par-
tial pipeline replication [1] or checkpoint-rollback-recovery
such as those in IBM POWER6/7/8 and z10/196 [8], [16],
[44], [61] processors, and various Intel Corporation [90] and
Sun Microsystems mainframes [43]. While these are more
efficient than naive TMR, they come with limitations on their
error model, their area overheads are still over 100% and/or
they incur a significant performance penalty [91] (e.g., owing
to the fact that they leverage temporal redundancy in an
effort to minimize area overhead).

There exists a class of computationally error resilient
codes based on the residue number system (RNS) [31], that

56

Table I: A (4, 2)-RRNS example with the simplified base set (3,
5, 2, 7, 11, 13). % is the mod operator. Range is 210, with 11 and
13 being the redundant bases. (Reproduced from [21].)

Decimal % 3 % 5 % 2 % 7 % 11 % 13
13 1 3 1 6 2 0
14 2 4 0 0 3 1

13+14=27 (1+2)% 3=0 2 1 6 5 1
All columns (residues) function independently

of one another.
An error in any one of these columns (residues)

can be corrected by the remaining columns.

are generally superior to the above techniques in terms of
area, energy and latency overheads. The premise of RNS
is that a number can be uniquely represented as a tuple
of residues, where the residues are the remainder when
the number is divided by a set of coprime bases/moduli.
Each residue itself may be represented in a weighted radix
representation in binary. An example is shown in Table I.
Assume the set of bases/moduli to be (3, 5, 2, 7); then, the
number 13 can be uniquely mapped to the tuple (1, 3, 1, 6)
as a result of the Chinese remainder theorem. Observe that
(13 mod 3 = 1), (13 mod 5 = 3) and so on. Now, suppose
we wish to add 13 (1, 3, 1, 6) to the number 14 (2, 4, 0, 0);
this can be achieved by simply (modulo) adding the residues
respectively to obtain 27 (0, 2, 1, 6). Observe that ((1 + 2)
mod 3 = 0), ((3 + 4) mod 5 = 2) and so on. Critically, the
computation occurs with no carries or interaction between
residues.

RNS is similarly closed under subtraction and multipli-
cation operations as well, and they too can operate without
interaction between residues. This important property has
several useful implications:
• As the residues operate with no carries between them,

they can operate in parallel. Furthermore, each residue
operation’s bit width is a fraction of that of the original
operation. This translates into improved computational
efficiency, which has been proven to be especially useful
in digital signal processing (DSP) [19], [24], [81].

• A very large number can be losslessly represented and
operated on via many smaller numbers (residues) in par-
allel. This property is used by the cryptography (RSA)
community [3], [42], [116].

• Any bit error caused by a faulty computational logic
element is guaranteed to be localized to within the cor-
responding residue, without impacting any of the other
residues.
The last implication is of particular interest because it

allows for a robust, efficient method for computational error
correction. When redundant bases/moduli are introduced
(Redundant RNS or RRNS) [112], the resulting redundant
residues form an error correcting code that transforms itself
automatically upon arithmetic operations, rather than having
to be recomputed afterwards. If a corrupt residue results
during an arithmetic operation, it is possible to infer its
value using the remaining correct residues in the result. To
continue our running example in Table I, the number 13,
being less than the product of the initial set of bases/moduli
(3, 5, 2, 7), (i.e, 210), it can be uniquely represented using
the 4-tuple (1, 3, 1, 6), via the Chinese remainder theorem.
As such, we refer to these bases/moduli and residues as non-
redundant. Upon adding two redundant bases/moduli, say
(11, 13), the resultant redundant residues are therefore (2,
0). These redundant residues, by definition, are not necessary
for representation, but provide a way to recover from errors.
Given the (4, 2)-tuples for 13 (1, 3, 1, 6, 2,0) and 14 (2, 4,
0, 0, 3,1), a storage/transmission/computation error arising

in any one of the residues of 13, 14 or their arithmetic
manipulation result, can be corrected using the remaining
residues. The running example is summarized in Table I.

The range for an RRNS representation is the product of
its non-redundant moduli. Therefore, by choosing a non-
redundant base/modulus set to be (199, 233, 194, 239) it
becomes possible to represent a 32-bit integer in general in
an RNS format, and extending it with a redundant set of
(251, 509) allows for an RRNS representation. Such a (4,
2)-RRNS has the following advantages, over and above what
RNS provides to us:
• Computational error correction can be achieved with a

little over 50% area overhead.
• The SECDED granularity is that of a residue; meaning that

such an RRNS is capable of correcting multi-bit errors as
long as they occur within a single residue, or alternately,
is capable of detecting multi-bit errors as long as they
occur within at most 2 residues.

• Being closed under arithmetic, the correct value is pre-
served across a chain of dependent operations. Therefore,
it is not necessary to incur the overhead of an RRNS error
correction/detection after every operation.

• Due to the above, RRNS lends us robust computational
error correction with relatively insignificant performance
penalty, as also evidenced by Deng et al. [21].
Furthermore, there has been a significant body of research

on RRNS that strives to make it more efficient algorith-
mically for error resilience [5], [6], [17], [23], [27], [33],
[34], [38], [47], [56], [57], [63], [77], [80], [82], [89],
[92]–[94], [97], [98], [101]–[103], [113]–[115], [117] and
division [4], [30], [39], [40], [42], [63], [64], [92], [99].
Although typically limited to detection, residue based logic
protection (including that for floating point units and vector-
ized units) has widespread used in several commercial high-
end server processors [8], [16], [43], [61], [90]. Clearly, the
RRNS approach of computational error correction is ranked
among the highest in terms of error correction capability and
efficiency.

An efficient RRNS-based architecture is a viable compiler
target for contemporary general-purpose as well as scientific
computing applications, in addition to being able to work
efficiently with novel devices that operate close to the kT
noise floor. We strongly believe that single-thread processor
performance scaling that has been stalled since the mid-
2000s can be restarted via RRNS.
B. The Problem

While RRNS is clearly attractive for designing ultra-low-
power, computationally error resilient microarchitectures,
prior work on RRNS has abstracted away the memory
hierarchy for simplicity. Thus, an RRNS microarchitecture
hits a performance bottleneck when connected to non-ideal,
real world memory systems. Memory is addressed in binary
in conventional processors, whereas an RRNS compute core
natively generates memory addresses as a tuple of residues.
There are two naive approaches to this memory interface
problem:

Binary. Convert the tuple-of-residues format to binary and
address memory in binary as usual. This approach imposes
a severe latency and energy penalty on every instruction
fetch, load and store operation. This overhead is due to the
multi-step nature of each RNS to binary conversion, which,
nominally costs 8 cycles in the form of add and table lookup
operations. According to our results, this slowdown is 3×
on average for in-order cores and 2× for out-of-order (OoO)
cores.

57

Rns concat. Another straightforward, although naive ap-
proach is to concatenate the native tuple-of-residues and
use the result as the memory address. Unfortunately, this
technique destroys spatial locality of sequential memory
accesses, rendering caches largely ineffective and causing
application slowdowns of over 3× on average for in-order
cores and 4× for OoO cores.

There are other overheads associated with RRNS, such as
non-trivial comparison and boolean operations. However, the
overheads due to memory addressing inefficiencies are sig-
nificantly higher. The memory hierarchy is accessed for each
instruction (PC) in addition to memory instructions (LD/ST).
In contrast, comparison and boolean op instructions are less
frequent, even if a targeted code generator does not minimize
such ops. Furthermore, even with a naive implementation,
the penalty for such ops is less than that of a cache miss.
In an independent study (that ignores memory addressing
inefficiencies), we found that the impact of slow compar-
ison, boolean operations as well as consistency checking
operations due to RRNS makes programs run just about
20% slower than a traditional core. Yet, due to RRNS, we
realize significant energy savings, rendering energy-delay-
product benefits of about 2× when compared to traditional
non-error-correcting cores, in spite of these overheads.

In spite of its strong potential to restart single thread
performance scaling, an RRNS processor is not competitive
with traditional designs due to memory addressing ineffi-
ciencies outlined above. The energy savings would be over-
shadowed by the decrease in memory system performance.
This paper is the first study of its kind to our knowledge to
focus on the RRNS memory access problem.

C. Contributions
This paper makes the following contributions:

1) Extends an RRNS microarchitecture - one that is capa-
ble of reliably functioning with ultra-low energy logic
devices that operate near the kT thermal noise floor at
tens of millivolts - to support efficient memory hierarchy
access.

2) Proposes and analyzes an efficient, novel translation
scheme (rns sub) with locality properties similar to that
of binary, but with a fraction of its performance/energy
overhead.

3) Reduces the performance impact of the naive binary
approach by using a TLB-like structure called the Con-
version Lookaside Buffer (CLB) to cache conversions.

4) Proposes a technique to improve spatial locality in the na-
tive, zero-overhead translation scheme (rns concat) via a
hybrid compiler approach and a modified programming
model.

5) Constructs a design space from the schemes proposed and
from the analysis of the resultant memory access pattern
behavior, along with a detailed cost-benefit analysis.

II. RRNS CORE MICROARCHITECTURE
Having already presented an overview of the general

workings of RNS and RRNS, we now provide a formal
description for completeness (proofs omitted for brevity).
We then describe an overview of a generic RRNS compute
core. Readers who are not interested in the formality can
safely skip ahead to Section II-C.
A. Residue Number System (RNS)

Let B = {mi ∈ N f or i = 1,2,3, ...,n} be a set of n co-
prime natural numbers, which we shall refer to as bases or
moduli. M = ∏n

i=1 mi defines the range of natural numbers

that can be bijectively represented by an RNS system that
is defined by the set of bases B. Specifically, for x such that
x ∈ N, x < M, then, x can be represented as the following
tuple: (|x|m1 , |x|m2 , |x|m3 , ..., |x|mn), where |x|m = x mod m.
Each term in this n-tuple is referred to as a residue. If
necessary the value of x can be regenerated from the tuple
of residues using a series of addition and table lookup
operations via the Chinese remainder theorem, mixed-radix
conversion, or macro-coefficient extraction.

Addition, subtraction and multiplication are closed under
RNS, rendering the residues to be mutually independent
wrt arithmetic. In other words, given x,y ∈ N, x,y < M,
we have |x op y|m = ||x|m op |y|m|m, where op is any
add/subtract/multiply operation.

B. Redundant RNS
To augment RNS with fault tolerance, r redundant bases

are introduced. The set of moduli now contains n non-
redundant and r redundant moduli: B = {mi ∈ N for i =
1,2,3, ...,n,n + 1, ...,n + r}. The reason these extra bases
are redundant is because any natural number smaller than
M (= ∏n

i=1 mi) can still be represented uniquely by its n
non-redundant residues. Recall that the introduction of r
redundant residues renders a computationally resilient error
code because of the fact that all residues are transformed
in an identical manner under arithmetic operations. For x
such that x ∈ N, x < M, its RRNS representation is as
follows: (|x|m1 , |x|m2 , |x|m3 , ..., |x|mn , |x|mn+1 , ..., |x|mn+r), i.e.,
containing n non-redundant residues as well as r redundant
residues.

We refer the interested reader to [112] for details of
the multi-bit error correction operation, which involves
addition, multiplication and table lookup operations. This
correction capability increases with r, tolerating upto r

2
errant residues [33]. There are proposals to perform frac-
tional multiplication [112] and to represent floating point
numbers [18] using RNS. The key idea to extend this to
RRNS is to protect the exponent and mantissa separately,
as they transform differently upon arithmetic operations. A
detailed treatment of these concepts is beyond the scope of
this paper.

For fault tolerance to work, certain conditions must be
satisfied by B [112]. Given these, published work suggests
that the most efficient conversion to binary algorithm (for
n= 4, independent of r) nominally costs 8 cycles and is pos-
sible via macro-coefficient extraction [112]. More efficient
conversion algorithms for RNS exist, such as those that use
Mersenne primes (or other specific structural properties) as
bases [14], [15], [71], but no known RRNS algorithms exist.

In this paper, (n,r) = (4,2) and moduli set used is
(199, 233, 194, 239, 251, 509), whose non-redundant repre-
sentable range is roughly that of a 32 bit unsigned integer.
A different set of bases may also be used for reasons such
as a higher representable range, more efficient arithmetic,
improved reliability characteristics etc., the details of which
are beyond the scope of this paper. We assume the aforemen-
tioned bases in our evaluation but are careful not to over-fit
our architectural suggestions and insights to this specific set.
C. Anatomy of an RRNS Core Microarchitecture

Figure 1 depicts a generic schematic of an RRNS core
with 4 non-redundant sub-cores and 2 redundant ones. This
schematic is similar to prior RRNS core microarchitecture
proposals [21], [112]. Each sub-core is associated with
exactly one base modulus and thereby operates on its own

58

Figure 1: Generic high level schematic of an RRNS error
correcting compute core with 4 non-redundant sub-cores and 2
redundant sub-cores.

residue, with the register file and highest level data cache
being distributed into the 6 subcores on a per-residue basis.

Error model. Recall that such a core operates entirely
on RRNS data and literals, meaning that there are no
unnecessary (and expensive) conversions to and from binary.
Therefore, all memory addresses (PC, LD/ST) are in RRNS
form, including any pointer arithmetic. Another upshot of
operating entirely on RRNS data is that control-path errors
manifest themselves as data errors, meaning that they can
be handled simply by handling the data error. For example,
if there is an error in bypass logic in a subcore, or, if a
faulty decoder in one of the subcores causes it to perform
a multiplication instead of an addition, the resultant residue
for that subcore would have an erroneous value, but can be
recovered from the remaining 5 residues that were a result
of the correct addition operation. Finally, as instructions
themselves don’t undergo modification, ECC is sufficient
to protect them [21]. The architecture proposed in [21]
is able to ensure reliable operation as long as at most
one subcore is in error (possibly multi-bit) between two
error correction operations. Circuit-hardening or using high
Vdd for the error correction logic is proposed to ensure
its reliable operation. Because of latching effects, SRAM
transistors have different (more prone to errors) reliability
characteristics when compared to logic, and as such, are
modeled with 100× the error probability of logic transistors.

Overheads. In terms of area, such an RRNS error cor-
recting core requires 2× the area of a traditional non-error-
resilient core. However, a large fraction of this overhead is
from LUTs necessary in the error correction operation; a
(4, 1)-RRNS core that simply detects errors is in fact 34%
smaller in area when compared to a traditional core. In an in-
dependent study that implements the error model above (but
ignores memory addressing inefficiencies), we found that
the overhead due to slow comparison operations, boolean
operations as well as RRNS error correction operations
resulted in an overhead of just about 20% in runtime when
compared to a traditional, non-error-correcting core over
general purpose (SPEC2006) as well as computationally
intensive workloads (such as FFT, matrix multiplication
etc.). However, RRNS enables lowering of signal energy to
few tens of millivolts, and results in about a 2× improvement
in energy-delay-product, in spite of these overheads. The
engineering details of this study are beyond the scope of
this paper and we omit them for space constraints.

Abstractions for the memory interface. The presence
of a Load/Store unit in the redundant sub-cores is imple-

Figure 2: An (R)RNS compute core natively generates memory
addresses in the 4-residue tuple format. This is depicted by MAR
% mi in the figure, where mi is the ith base modulus, % is the
modulo operator, and MAR could be one of Program Counter (PC),
Load or Store address.

mentation dependent. For the purposes of this paper, we
assume that the core is responsible for generating valid
memory requests in the Memory Address Register (MAR).
This is possible by either (a) inserting an RRNS consis-
tency check before a memory access, or (b) by enabling
a checkpointing mechanism for rollback/recovery in case a
memory request to an illegal location is generated. For the
latter, a segmentation scheme can be used to flag ”wrongly”
computed addresses as illegal, thereby triggering checkpoint
recovery. As we show in Section III-B, minor perturbations
in the native rns concat representation of a memory address
causes its value to fluctuate wildly, thereby allowing for such
segmentation to work. Note that the consistency check of
(a) or the segment check of (b) can be done in parallel
with a memory access, and are therefore not on the critical
path of the program. Therefore, we omit the Load/Store
units in the redundant subcores. Finally, the addressing
logic in the memory hierarchy (such as a decoder or an
address translator) is assumed to either utilize devices that
do not stochastically flip due to thermal noise, or employ
self checking logic [36], [86]. Relaxing either assumption
reveals a set of implementation dependent tradeoffs and
are left for future work. Without loss of generality, we
assume for the purposes of this paper that no explicit
error correction is required for such addressing logic in the
memory hierarchy. It follows that the redundant residues can
be dropped from the MAR, and that a 32-bit address can be
logically represented as a 4-tuple RNS number.

III. MEMORY ADDRESSING SCHEMES

As noted in Section II-C, the memory address generated
by an RRNS compute core in its native form is in a
tuple-of-residues format, where the address itself may be to
instructions or data. As depicted in Figure 2, such a 4-tuple
must be properly interpreted before the memory hierarchy
can be accessed. In this section, we present a basis set of
possible interpretations of an address.

A. Interpretation Schemes
Binary. The approach assumed by prior work was to con-

vert the 4-tuple of residues to its binary representation and
use this as a memory address. From this point on, the system
can access the memory hierarchy as conventional computers
do. However, this conversion from RNS to binary doesn’t
come for free, and the cost must be paid for each memory
access, both cache hits and cache misses. This overhead is a
multi-cycle access time increase and an associated increase
in energy consumption. This is because conversion from
RNS to binary is non-trivial: it is a multi-step operation,
involving addition and table-lookup operations, and costs
8 CPU cycles nominally. Our experiments indicate that
applications suffer from a slowdown of 3× on average for
inorder cores and 2× for OoO cores upon using such a naive
conversion approach.

59

(a) Delta between consecutive addresses:
binary scheme.

(b) Delta between consecutive addresses:
rns concat scheme.

(c) Delta between consecutive addresses:
rns sub scheme.

Figure 3: Spatial locality analysis via visual comparison of the 3 addressing schemes for a sequential stream of addresses by computing
the deltas of interpreted addresses of consecutive addresses of the sequential stream.

{r1,r2,r3,r4} =⇒ binary({r1,r2,r3,r4})
This conversion typically is not a one-time cost as ad-

dresses may repeat themselves (locality). As a solution,
we propose to cache the conversion itself in a Conversion
Lookaside Buffer (CLB), in a manner similar to how a TLB
caches translations.

Rns concat. On the other extreme, we have a lightweight
interpreter that merely concatenates the 4-tuple, with the
resulting 32bit number being treated as the address to the
memory hierarchy. More concretely, the 4-residue tuple {r1,
r2, r3, r4} is treated as the bitstream r1r2r3r4.

{r1,r2,r3,r4} =⇒ r1r2r3r4

Rns sub. We define another scheme similar to
rns concat, but the lowest residue is subtracted from
the 3 other residues in an attempt to preserve locality.
{r1,r2,r3,r4} =⇒ rns concat((r1− r4)%m1,

(r2− r4)%m2, (r3− r4)%m3, r4)

where, the RNS base moduli are given by mi. This scheme is
significantly less expensive than binary and is slightly more
expensive than rns concat.

B. Sequential Address Analysis Example
Figure 3 shows a comparison of how the 3 addressing

schemes discussed so far, binary, rns concat and rns sub,
remap a stream of sequential accesses into the memory ad-
dress space. On the X-axis is the input value to the Memory
Address Interpreter; on the Y-axis is the difference (delta)
between two consecutive interpreted memory addresses.

First, notice that the delta for binary is always exactly
1; converting the tuple-of-residues back to the binary num-
ber they represent results in sequential memory addresses.
However, rns concat remaps accesses according to the fol-
lowing function: if the address X ≡{r1, r2, r3, r4}, then
X + 1 ≡{r1 + 1, r2 + 1, r3 + 1, r4 + 1}, thereby resulting
in a delta of 0x01010101 as each residue is 8-bits wide.
This is the delta value that is seen in the figure as a
straight horizontal line slightly above 224. However, each
time a residue overflows, the above constancy claim for delta
breaks down, generating the discontinuities shown in the
plot.

Non-unit delta values will cause consecutive accesses to
touch different cache lines and memory pages, destroying
spatial locality in the access stream. To mitigate this constant

delta offset seen in rns concat, we define rns sub in an
effort to preserve locality. Applying rns sub to X and 1, we
observe the following pattern (ignoring modulo overflows):

X ≡ {r1− r4,r2− r4,r3− r4,r4}; 1≡ {0,0,0,1}
=⇒ X +1≡ {r1− r4,r2− r4,r3− r4,r4 +1}

Therefore, rns sub yields a delta value of exactly 1 in the
common case, similar to the binary scenario. In general, the
rns sub representation of any number n < m4 is {0,0,0,n},
meaning that difference between X +n and X in the rns sub
representation is exactly n in the common case. This means
that rns sub is capable of preserving the spatial locality
that cache and DRAM memory systems need to deliver
performance.

While the detailed evaluation of a prefetcher is beyond the
scope of this paper, intuitively, prefetchers that work well
with binary would work well with rns sub as well. With
rns concat, however, a stride of 1 must be re-interpreted
as a stride of 0x01010101, which is the delta between
consecutive addresses, significantly altering the operation of
most prefetchers.

Although our example analysis in this section is based
upon a sequential address stream, the insights are applica-
ble to arbitrary streams that exhibit spatial locality, as is
demonstrated via simulation results detailed below.

IV. DESIGN TRADEOFFS
Utilizing a basis set of address interpretation schemes

outlined in Section III, we now construct and analyze a de-
sign space consisting of memory access granularity, Memory
Address Interpreter (MAI) configuration and DRAM address
interleaving dimensions.
A. Memory Access Granularity

As discussed in Section III, with rns concat based
schemes, consecutive addresses do not map onto contiguous
memory locations. This causes spatial locality in caches
to suffer, prompting us to salvage sequential locality by
increasing the memory access granularity to that of a cache
line. Under this paradigm, each memory access now refers
to a 64-byte chunk of memory rather than a single byte.
Clearly, this requires support from the software stack, and we
propose an ISA extension, which we name as the SELECT
instruction, to help.

The SELECT instruction takes as arguments a base ad-
dress (represented as rns concat), and a separate offset rep-
resented in binary to perform a word lookup within a cache

60

line. This hybrid binary-rns concat representation renders
the best of binary on one hand, i.e., sequential locality as
intended by the programmer, and that of rns concat on the
other hand, i.e., no runtime conversion overhead. A detailed
example of how such a compiler transformation may be
effected is presented in Section VIII for a word size of 8
bytes, although other word sizes can also be supported.

Representing a portion of the address in binary may seem
counter-productive to the reliability of the system, but note
that this offset is static (set at compile time) and therefore
does not warrant computational error correction, meaning
that the ECC protection that comes naturally to instructions
(Section II-C) is sufficient to protect this offset as well.

Introducing such a representation comes with a set of
limitations in software. First, if each cache line access is
to be accompanied by a SELECT instruction, a static code
bloat of about 15% occurs. In practice, we expect this bloat
to decrease significantly due to spatial locality; once a cache
line is loaded, multiple SELECTs can be performed without
re-issuing the cache line access. Static code bloat can also
be reduced by designing compiler optimizations that further
leverage spatial/temporal locality in instruction layout and
scheduling. Second, an increased memory access granularity
renders arbitrary pointer arithmetic and branch targets tricky
to disambiguate at compile time, unless they become aligned
to cache-line boundaries. Finally, for general purpose system
integration, such a hybrid representation may be required to
be extended into the software runtime to avoid an explosion
of pages. Alternately, TLB and paging performance may
also be improved by employing super pages [72], [100],
especially in emerging storage class memories [10] (with
segmentation support for security).

The SELECT instruction requires tight integration with
the software stack, the detailed implementation of which is
beyond the scope of this paper.
B. Memory Address Interpreter (MAI)

Figure 2 presents a simplified view of the memory system.
With typical memory systems comprising of L1, L2, L3
caches and a DRAM, the Memory Address Interpreter does
not necessarily have to be a singleton unit at the highest
level of cache. With a non-inclusive cache hierarchy, the fol-
lowing exhaustive set of legal Memory Address Interpreter
configurations are explored:
1) Ideal

IBIN This is the ideal configuration where conversion to
binary is without any overhead, or equivalently, a non-
error-correcting core that uses a conventional weighted
binary representation.

2) Naive
NL1 This is a naive conversion approach where every mem-

ory access is converted to binary before accessing the
L1 cache, thereby incurring a conversion overhead of
8 cycles and its associated energy consumption (adders
and lookup tables).

NRNS This is a naive conversion approach where the tu-
ple of residues in the MAR is simply concatenated
(rns concat).

NMEM This is a naive conversion approach where rns concat
is used through the cache hierarchy and a conversion
to binary is effected at the memory controller, thereby
incurring an overhead of 24 core cycles (this is be-
cause the clock domain of the memory controller is
nominally about three times slower than that of the
core).

3) Compiler. These approaches require compiler support:
CRNS This uses compiler support to realize a memory access

granularity of 64 bytes (cache line) and simply con-
catenates the tuple of address residues before accessing
L1. In other words, this is NRNS when the SELECT
instruction is used.

CX X∈{L2, L3, MEM}. These are similar to CRNS,
except that a conversion to binary is effected before
accessing the L2/L3/main memory respectively.

4) Rns sub
SUB This employs the single cycle overhead conversion of

rns sub before the L1 cache is accessed.
SUBM This is similar to SUB except that a binary conversion

is effected before a main memory access.
5) CLB

CLBX X∈{L1 N, MEM N}. This is similar to NL1 or
NMEM, except that an N-entry CLB is used in
an attempt to hide the performance overhead of the
conversion to binary, although at a potentially higher
energy cost. Upon a CLB hit, a single cycle conversion
is rendered, however, a CLB miss renders an access
time equal to that of a binary conversion as usual.
Furthermore, CCLBMEM N is similar to CMEM but
with an N-entry CLB at the memory controller.

CLBY Y is of the form S N. This is similar to SUBM, except
that the conversion to binary at the memory controller
is augmented with an N-entry CLB.

Space of valid configurations. Those listed above are
deemed representative of an exhaustive brute force sweep.
For example, it doesn’t make sense to perform a conversion
to RNS once a binary conversion or an rns sub has already
been effected. Also, mixing rns sub at L1 and conversion
to binary at L2/L3 imposes constraints on possible cache
configurations1, hence, we exclude them from our evaluation
(although the careful reader may reason about these tradeoffs
from the analysis and evaluation presented in this paper).

Cache coherence. Cache coherence state is typically
maintained at the granularity of a cache line. With the
exception of NRNS, NMEM and CLBMEM N, all the
other configurations proposed preserve locality within a
cache line at the very least, when compared to IBIN. To
elaborate, Compiler approaches are specifically designed to
preserve sequential locality within a cache line. NL1 and
CLB based approaches that effectively convert an address
to binary prior to L1 trivially preserve locality within a
cache line. Rns sub based approaches preserve locality for
m4 consecutive bytes in general (Section III-B); since all
the moduli (and m4, in particular) are greater than 63,
therefore, Rns sub preserves cache line locality as well. We
conclude that all efficient and well performing configurations
proposed are also amenable to traditional, unmodified cache
coherence protocols.

Summary. Intuitively, we first observe that the Com-
piler approaches would benefit from the best of locality-
preserving properties of binary and the no-overhead nature
of rns concat, however, at the cost of requiring changes to
and tight integration with the software stack. Next, Rns sub
approaches would benefit from both its locality-preserving,
as well as memory level parallelism inducing properties,
at low cost. Finally, CLB based approaches would mimic

1For example, given the cache configuration in our evaluation, the addresses X
(0x4fab84d8) and Y (0x4fab84fc) when subject to rns sub at L1 and conversion to
binary at L2, map onto the same L1 index (36) but different L2 indices (165, 166).
This makes enforcing a generic non-inclusive property unnecessarily complex.

61

(a) L1 MPKI normalized to binary

(b) L3 MPKI normalized to binary

Figure 4: Misses Per Kilo Instructions (MPKI – lower is better) of representative RNS based schemes, normalized to a binary scheme.
SUB successfully retains spatial locality present in the lower order bits of IBIN. CRNS salvages sequential locality lost by NRNS, with
the help of compiler support.

IBIN, however, at a significant energy overhead. We will
demonstrate in detail in Section V that the relative per-
formance is Ideal > Compiler > CLB > Rns sub >>
Naive, with Rns sub rendering the most energy efficient
architecture along with the added advantage of requiring no
support from the software stack.

C. DRAM Address Interleaving
The MAI of Section IV-B directly impacts DRAM address

interleaving. While an industry standard memory controller
policy is typically undisclosed, we span the following inter-
leaving policies gathered from published research:
• Row: The LSB bits of the memory address decide the

Column index, followed by the Row index, Bank, Rank
and the MSB bits decide the Channel (ChRaBaRoCo).

• Channel: This address interleaving is devised with the
aim of boosting memory level parallelism when a binary
coded memory address is presented (RoBaRaCoCh).

• MinOp: This address interleaving splits the column in-
dices such that exactly 4 consecutive cache lines (assum-
ing a binary coded memory address) may map to a single
row, thereby striking a balance between row buffer hit rate
and memory level parallelism [46].

• XOR *: These apply a permutation-based interleaving
scheme (for reasons similar to the above) to each of the
interleavings presented above [85], [118]. The essence of
this is to set the bank index by XORing the bank bits with
a selection of higher order bits.

V. EXPERIMENTAL EVALUATION
A. Evaluation Methodology

We use pin [65] to generate a dynamic instruction trace
that records the program counter of each instruction, as
well as any load/store address. Our pintool instruments all
32 bit x86 gcc (-O2) optimized binaries from the SPEC
2006 [20] benchmark suite, with test inputs. These traces
drive a ramulator [54] based simulator, complete with an
L1, L2, L3 non-inclusive cache hierarchy and DRAM main
memory. The baseline configuration is presented in Table II.

Table II: Baseline Configuration
Parameter Dimensions

Core Inorder / OoO
OoO Fetch/Retire width/ROB size 4/4/128

L1 size/associativity 32kB/8-way
L2 size/associativity 256kB/8-way
L3 size/associativity 2MB/8-way

Load to use latency L1/L2/L3 4/4+12/4+12+31 cycles
MSHR per cache 16
Caching policy Non-inclusive/LRU

Core-Memory frequency ratio 3:1
DRAM JEDEC Standard DDR4 (1channel) / LPDDR4 (2ch)

DRAM address interleaving Section IV-C
DRAM policy FRFCFS prioritizeHit

Open page
Memory Address Interpreter Section IV-B

CLB size 128/1024 entries
CLB policy Fully associative/LRU

CLB hit / miss latency 1 cycle/binary conversion

We enhance the simulator to support the design space
presented in Section IV, and use McPat [59]/CACTI [60]
to model energy overheads due to the Memory Address
Interpreter. Recall from Section II-C that memory addressing
logic such as the MAI is assumed to be error-free and can
therefore be modeled with conventional MOSFET-based cir-
cuits. For the purposes of the power and area model for the
MAI, we assume a 32nm/300K/0.9V/2GHz configuration.

B. Cache
First, we demonstrate the intuition formed in the theo-

retical analysis of Section III regarding the impact RNS
addressing schemes have on locality. Figure 4 shows the
cache misses per kilo instructions (MPKI) of RNS schemes,
when normalized to binary. Binary, captured by IBIN, is the
normalizing baseline; rns concat is captured by NRNS, with
the effect of introducing the SELECT instruction captured
via CRNS, and SUB captures behavior of rns sub. The other
MAI configurations from Section IV-B do not introduce any
new addressing schemes.

As expected from Section III, NRNS suffers a significant
(18×/13× for L1/L3) loss in spatial locality, whereas CRNS
helps salvage this. SUB was designed to retain the spatial

62

Figure 5: DRAM row buffer hit rate (higher is better) of SUB,
normalized to IBIN, under two example address interleavings. Row
locality is completely lost in CRNS irrespective of interleaving,
and is therefore omitted from this plot. Row locality for SUB is
relatively less impacted, but prefers the first interleaving, by design.

(a) DRAM read latency normalized to binary: Row interleaving.

(b) DRAM read latency normalized to binary: Channel intlv.

Figure 6: DRAM read latency (lower is better) of representative
RNS based schemes, normalized to a binary scheme, under two
example address interleavings. RNS based schemes naturally ex-
tract more memory level parallelism. Together with row locality
characteristics (Figure 5), read latency of RNS based schemes are
about on-par with or better than binary based schemes.

locality that is present in the lower order bits of IBIN, and
successfully, is more or less on par with it. The interplay
of addressing and temporal locality is rendered responsible
for cases where RNS schemes show superior cache perfor-
mance to binary. Results from cache configuration sweeps
w.r.t. size/associativity/replacement policy are as expected.
Therefore, we omit them as it adds no new insight to the
architecture community.

C. DRAM
There are two aspects to DRAM performance: row buffer

hit rate and memory level parallelism exploited.
By design, we expect SUB to show somewhat similar row

buffer hit rate to IBIN for an interleaving policy that respects
the locality preserving design principle of SUB, such as
row interleaving. Figure 5 shows its hit rate, normalized to
that of binary, for two example interleaving policies. CRNS,
however, preserves spatial locality at a smaller granularity,
thereby exhibiting very low row buffer hit rate. For brevity,
we do not present detailed results for NRNS because of its
incredibly poor cache performance, and omit depiction of
CRNS from Figure 5 because of its near zero hit rate. The
interleaving policy has a significant impact on row buffer
locality.

Table III: Most favored DRAM interleaving policy for an MAI
configuration. In general, RNS based configurations (such as
NRNS) benefit from increased memory level parallelism especially
when linear address interleaving such as row interleaving are
used and binary based configurations (such as IBIN) benefit from
permuted and XOR interleavings. Favorable interleavings choice
is also affected by row buffer locality and memory pressure
differences (due to interplay between MAI configuration, cache
performance and processor configuration). If several equally per-
formant choices are available, an arbitrary selection is made.

MAI
Configuration

Inorder OoO

Ideal IBIN XOR MinOp XOR MinOp
Naive

NL1 XOR Channel
NRNS Row RowNMEM

Rns sub SUB XOR MinOp XOR MinOp
SUBM Row Row

Compiler
CRNS XOR MinOp XOR MinOp
CL2 Row Row
CL3

XOR MinOp XOR MinOp
CMEM

Compiler CCLBMEM 128
/ CLB CCLBMEM 1024

CLB
CLBL1 128
CLBL1 1024 XOR Channel
CLBMEM 128 Row RowCLBMEM 1024

Rns sub CLBS 128 XOR MinOp XOR MinOp/ CLB CLBS 1024

On the other hand, because RNS addressing naturally
permutes an address, a higher degree of memory level
parallelism is expected, especially for linear interleaving
policies such as row interleaving. Figure 6 demonstrates this,
as we observe that the average read latency is significantly
improved inspite of an inferior row buffer hit rate for RNS
based schemes. This is one of the reasons why several
interleaving policies (Section IV-C) are deployed for binary
based addressing systems, i.e., permuting the address bits
reduces bank conflicts and therefore boosts performance
(other reasons not related to performance improvement for
such permutation are to avoid row-hammer [2] and security
issues).

The results presented in this section are with an inorder
processor, but similar trends are seen for OoO as well. Also,
DRAM scheduling and paging policies have an insignificant
impact on performance when compared to the impact due
to address interleaving. Therefore we omit their results for
brevity.

D. Overall Runtime
For completeness, we simulate the exhaustive set of

18 MAI configurations from Section IV-B across all 6
DRAM address interleavings from Section IV-C, and for
presentation purposes summarize the performance for each
configuration with its most favored DRAM interleaving
policy (Table III) in Figure 7. In deriving the most favored
interleaving, no distinction is made between workloads, i.e.,
the interleaving policy is varied only with MAI configuration
and is workload independent.

We normalize their performances against a fixed baseline
(NL1 with row interleaving) to be able to compare across
configurations and interleavings, and present the resulting
speedups. We present only the harmonic mean across the
benchmark suite.

[Ideal] For example, a conventional non-error-correcting
binary core IBIN performs 2.84×/2.13× faster on av-
erage when compared to the baseline (for inorder/OoO
processor respectively, with a DDR4 DRAM), and favors
XOR MinOp as its preferred address interleaving.

[Naive] None of the alternate address interleavings make
a noticeable improvement to the performance of the baseline

63

Figure 7: Speedup (higher is better) when compared to a naive approach of converting to binary upon each L1 access (NL1 with row
interleaving). Inorder cores are understandably more sensitive to conversion latency than OoO cores. For both inorder/OoO cores, the
relative performance of each cluster is Ideal > Compiler > CLB > Rns sub >> Naive.

(a) Inorder processor (b) OoO processor

Figure 8: Overhead in conversion energy (mJ) vs runtime; lower is better for both axes (similar to a pareto chart). SUB is the most
efficient microarchitecture configuration that requires no support from the software stack.

NL1. The 8 cycle conversion latency on every access to the
memory hierarchy is left unhidden, allowing it to dominate
the performance trends. NRNS/NMEM incur significant
slowdowns because of their poor cache performance.

[Rns sub] SUB shows significantly improved perfor-
mance over the naive approaches. SUBM follows closely
behind, due to slight decrease in exploited memory level
parallelism, coupled with its conversion latency at the mem-
ory controller.

[Compiler] The approaches that leverage the SELECT
instruction effectively approach IBIN by combining the best
of binary (cache performance) and RNS (no conversion
overhead).

[CLB] Placing a 128 entry CLB before L1 allows for
performance superior to SUB, and a 1024 entry CLB seems
sufficient to approach the performance of IBIN. However,
placing a CLB at the memory controller is rendered useless
unless either the SELECT instruction is used or rns sub is
used to prevent an explosion of cache misses.

From an Amdahl’s law perspective, the amount of over-
head and variation in memory access patterns introduced
by various MAI configurations has more weight than just
the DRAM interleaving policy, which is to be expected.
If we were to choose an unfavorable DRAM interleaving
instead, the performance on average for each of the non-
naive configurations vary by less than 1%, although we omit
detailed results for brevity.

LPDDR4 is a likely candidate to be used in conjunction
with low power microarchitectures, but comes at a cost

of increased row activation latency. Nevertheless, we find
that the insights presented in this paper hold even when an
LPDDR4 DRAM is used.

E. Energy Overhead
Figure 8 presents the performance of each of the MAI

configurations, when put in perspective of how much addi-
tional energy they consume. For each MAI configuration,
their most favored DDR4-DRAM interleaving is chosen
(Table III) and the mean cycle count and conversion energy
overhead (mJ) across the benchmark suite are presented.

[Ideal] For example, at the bottom left is IBIN, taking the
least number of cycles and without any conversion overhead.

[Naive] NL1, as has been mentioned throughout this
paper, suffers from poor performance and high energy con-
sumption. NMEM/NRNS have little or no increase in energy
consumption due to conversion alone, but their performance
suffers greatly.

[Rns sub] SUB/SUBM are the most efficient microarchi-
tectures that do not require support from the software stack
for them to work.

[Compiler] While these approach IBIN, they are subject
to software compatibility and integration issues as discussed
in Section IV-A.

[CLB] While placing a CLB at the L1 is more performant
than SUB, it comes at a higher conversion energy overhead.
Placing a CLB at the memory controller must be accompa-
nied by either an rns sub addressed cache or a cache line
addressed (SELECT instruction) cache.

64

(a) Inorder processor

(b) OoO processor

Figure 9: Slowdown of hypothetically faster binary convertors (4
cycles and 2 cycles as opposed to the best known candidate: 8
cycles) when compared to IBIN. NL1 thats used everywhere in
this document is annotated as NL1 8 for clarity. Our most efficient
microarchitecture technique that uses SUB is still faster than these
hypothetically faster convertors. It is also more energy efficient
than these, however, a quantitative comparison is not possible in
the absence of concrete algorithms for faster binary conversion.

Deriving a CLB configuration is similar to that of a TLB-
or cache-like structure. For example, while increasing the
CLB size increases access power, it may reduce the number
of CLB misses, which also translates into energy savings
on CLB miss repairs (ex: CLBL1 128 vs CLBL1 1024).
For brevity, we limit a CLB configuration sweep to just these
two for demonstrative purposes; the reader should be able to
easily infer points of tradeoff for other CLB configurations.

MAI Area. Table IV presents the area requirements of
few key configurations. We conclude that the energy trends
discussed above apply to area as well.

Table IV: Area requirement in mm2.
NRNS SUB CLB 128 CLB 1024 NL1

0 0.075 0.091 0.104 0.160
F. Sensitivity to Conversion Latency

Throughout this paper, we have assumed an 8 cycle
algorithm for converting an RNS tuple to a binary number
(NL1), as it is the state of the art given that the bases
must be amenable to RRNS error correction (Section II-B).
Nevertheless, we also evaluate the relative performance of
hypothetical conversion algorithms that take half as many
or even a quarter of the cycles. For clarity, we differentiate
these via subscripts (NL1 8, NL1 4, NL1 2). Figure 9 puts
their performance in perspective of two representative MAI
configurations: IBIN and SUB. Recall that SUB presents the
most efficient microarchitecture that does not impose restric-
tions on software. Therefore, for this analysis, we choose
IBIN as the baseline and also present SUB and NL1 8 to
put the performance of these hypothetical convertors into
perspective. Relative performance of the remaining MAI
configurations can be easily inferred from the previous result
sections.

Not only are these hypothetical faster convertors less
performant than the schemes presented in this paper, but
would also be less energy efficient. While a quantitative
comparison is not possible in the absence of concrete faster
algorithms, we expect their energy overhead to be rather
close to NL1 8 (and certainly much more than SUB) from
a functional standpoint of the process of converting to binary.

(a) TLB hit rate normalized to binary (higher is better)

(b) Fraction of pages that do not cause a hard disk access, normal-
ized to binary (higher is better)

Figure 10: Virtual memory performance of CRNS and SUB when
compared to IBIN. CRNS has superior TLB hit rate owing to its
higher memory access granularity, however, an explosion is seen in
the number of physical pages it touches, owing to its limited spatial
locality granularity. As expected, both TLB and page pressure of
SUB approach that of IBIN.

G. Virtual Memory
Certain RRNS based architectures may find it necessary

to integrate with a virtual memory (VM) subsystem. There
are two aspects to VM performance: TLB hit rate and page
pressure. Under an idempotent virtual-to-physical transfor-
mation, we use the reuse distance [7], [12] mechanism
to estimate the TLB hit rate in a 512kB structure and to
estimate page pressure using an 8GB DRAM, assuming a
page size of 4kB (as is common on Linux systems). We
quantify page pressure by measuring the number of pages
that have already been brought into main memory as well as
the number of pages that need to access secondary memory
(such as a non-volatile disk), as they may either have not yet
been allocated a physical page frame or had been evicted to
make way for newer pages.

Figure 10 highlights these for representative RNS
schemes, when compared to binary. Given its 64 byte access
granularity, CRNS exhibits high TLB performance thanks to
sequential locality in programs. However, this granularity is
rather small at the page level, causing an explosion in the
number of pages it accesses. As described in Section IV-A,
CRNS would have to be extended into the runtime system
(or a different page granularity should be used) in order to
attain low page pressure.

SUB, on the other hand, performs very similar to IBIN
on both counts. The reason for its relatively higher page
pressure when compared to binary is that 4kB pages have
an offset of 12 bits, whereas the residues in this paper are (or
specifically the fourth residue) 8 bits wide, thereby leading
to a gap in locality between rns sub and binary. Choosing
a wider m4 would result in an interesting tradeoff as it may
change the power-performance-reliability characteristics of
the RRNS core, but from a memory systems point of view,
it would enhance the spatial locality properties of rns sub
which directly translates to improved cache performance,
DRAM row buffer hit rate and virtual memory performance.

65

RESO [78], REDWC [45], RETWV [41], SCCSA [108], SHA [79], DIVA [1],
SITR [70], Timing Speculation [26], [37]

Figure 11: First order comparison of area overhead and energy-
delay product (EDP) of various mechanisms for computational
error correction, depicting the superiority of RRNS. Computational
error correction techniques use a combination of spatial and tempo-
ral redundancy techniques. While temporal redundancy allows for
a low area overhead, they suffer from a significant performance
penalty. Timing speculation techniques seem more efficient than
RRNS, however, their error model assumes all bit errors manifest
as circuit timing errors, which is not sufficient to work with ultra
low energy logic devices.

VI. RELATED WORK
Computational error correction. Figure 11, Section I-A

summarize various techniques in comparison with RRNS.
We refer the interested reader to Srikanth et al. [91] for a
more detailed survey on some of these non-residue tech-
niques; RRNS is generally considered superior in terms of
capability and efficiency for computational error resilience.
State of the art adoption and research in the industry also
claim the superiority of residue based resilience [16], [61].

Approaches that employ timing speculation [26], [37] may
seem superior to RRNS at first glance. However, the error
model that can be supported by an RRNS error correcting
architecture is orthogonal to theirs, if not broader. For
example, razor [26] uses conventional transistors, therefore
lowering Vdd lowers MOSFET switching speed significantly,
resulting in a large frequency drop, which could cause
setup time violations that they handle via a delayed latch
mechanism. They assume that any error manifests itself as a
timing error. Similarly, decor [37] uses a delayed commit
approach (with rollback support) to handle violations in
timing margins. However, with emerging devices (Section I),
Vdd can be lowered to few tens of millivolts with a relatively
lower frequency loss, meaning that operating at the resultant
thermal noise floor leads to stochastic, intermittent bit flips,
which cannot always be captured as circuit timing errors.
Unlike such approaches, RRNS error correcting architectures
can not only tolerate such errors in the data path, but also
in the control path between memory accesses.

In terms of being able to tolerate control path errors, ap-
proaches such as DIVA [1] that replicate parts of the pipeline
are capable. Their design provides recovery by having a
simple core recalculate results of an out-of-order core. In
this approach, the simple core is assumed to be error-free.
This is similar to a ”double-modular-redundancy” approach
with a rad-hard node, implying a relatively high overhead.
Furthermore, if the rad-hard simple core is instead prone to
error, checkpoint and re-execute methods would need to be
employed, similar to the IBM POWER6/7/8 and z10/z196
processors [8], [16], [44], [61] and various Intel Corpora-
tion [90] and Sun Microsystems based mainframes [43].
On the other hand, RRNS is able to tolerate errors in its
redundant as well as non-redundant computations.

Finally, a vast majority of these related work are at the

circuit level and can be augmented into RRNS-based archi-
tectures for potentially enhanced reliability characteristics.

Prime number based indexing. Kharbutli et al. [53]
propose using prime numbers for cache indexing to reduce
conflict misses. However, such indexing introduces fragmen-
tation that can only be amortized by higher cache capacities.
They therefore recommend using their technique only for
larger caches (such as L2/L3). Furthermore, their technique
isn’t applicable to DRAM addressing.

VII. CONCLUSION

New logic devices enable reduction of the supply voltage
to few tens of millivolts, yet maintaining a switching speed
superior to MOSFETs under low power operation. However,
they are subject to intermittent, stochastic bit errors in logic
due to proximity of operation to the kT noise floor. Compu-
tational error correction using the RRNS representation is a
promising approach to using these devices. However, prior
RRNS based architecture studies assume a simple, unrealis-
tic memory hierarchy without considering issues with RNS-
based memory addressing. This research found that naive
approaches such as NL1 and NRNS incur an overhead of
2×-4× on average. We propose new conversion strategies
and architecture extensions to significantly improve on naive
memory system performance. In our classification of the
design space, the relative performance is Ideal > Compiler
> CLB > Rns sub >> Naive, with Rns sub rendering
the most energy efficient architecture along with the added
advantage of requiring no support from the software stack.

The careful analysis of RNS-based memory access pat-
tern behavior and the detailed cost benefit analysis of the
resulting design space presented in this paper enables and
extends RRNS-error-correcting core microarchitectures built
from ultra-low energy logic devices. Using such devices has
the potential to punch through the power wall to restart
single core performance scaling via architectural advances
abandoned at the end of Dennard scaling a decade ago.

VIII. APPENDIX: SELECT INSTRUCTION
Consider an implementation with a 64 byte cache line

size, a double of size 8 bytes such that the following struct
has a size of 16 bytes, and the following snippet of code,
where M < N are arbitrary natural numbers that are not
necessarily compile-time constants.
typedef struct { double x; double y; } Foo;
Foo foos[N];
double sum = 0;
for (i = 0; i < M; ++i) {

sum += foos[i].x;
sum += foos[i].y;

}

A pseudo-assembly code of the loop body in a binary
computer would be as follows:

LD X, (foos + i*16) // Read foos[i].x
LD Y, (foos + i*16 + 1*8) // Read foos[i].y
ADD S, S, X
ADD S, S, Y

When SELECT instruction is used, the code transforms to:

uint8_t nOffset = sizeof(CACHELINE)/sizeof(Foo); //
64/16=4

// ++i is in RRNS ; ++n is in binary
for (rns_t i = 0; i < M / nOffset; ++i) {

LD A64, RNS(foos + i*sizeof(CACHELINE))
for (int_t n = 0; n < nOffset; ++n) {

SELECT X, A64, sizeof(Foo)*n
SELECT Y, A64, sizeof(Foo)*n + 1*8
ADD S, S, X
ADD S, S, Y

}
}

66

ACKNOWLEDGMENT

Sandia National Laboratories is a multimission labora-
tory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Admin-
istration under Contract DE-NA0003525.

REFERENCES

[1] T. M. Austin, “Diva: A reliable substrate for deep submi-
cron microarchitecture design,” in Microarchitecture, 1999.
MICRO-32. Proceedings. 32nd Annual International Sym-
posium on. IEEE, 1999, pp. 196–207.

[2] K. Bains, J. Halbert, C. Mozak, T. Schoenborn, and
Z. Greenfield, “Row hammer refresh command,” Aug. 25
2015, uS Patent 9,117,544.

[3] J.-C. Bajard and L. Imbert, “A full rns implementation of
rsa,” IEEE Transactions on Computers, vol. 53, no. 6, pp.
769–774, 2004.

[4] J.-C. Bajard, L.-S. Didier, and J.-M. Muller, “A new eu-
clidean division algorithm for residue number systems,”
Journal of VLSI signal processing systems for signal, image
and video technology, vol. 19, no. 2, pp. 167–178, 1998.

[5] J.-C. Bajard, J. Eynard, and N. Merkiche, “Multi-fault attack
detection for rns cryptographic architecture,” in Computer
Arithmetic (ARITH), 2016 IEEE 23nd Symposium on. IEEE,
2016, pp. 16–23.

[6] F. Barsi and P. Maestrini, “Error detection and correction by
product codes in residue number systems,” IEEE Transac-
tions on Computers, vol. 100, no. 9, pp. 915–924, 1974.

[7] B. T. Bennett and V. J. Kruskal, “Lru stack processing,”
IBM Journal of Research and Development, vol. 19, no. 4,
pp. 353–357, 1975.

[8] M. J. Boersma and J. Haess, “Residue-based error detection
for a processor execution unit that supports vector opera-
tions,” Mar. 17 2015, uS Patent 8,984,039.

[9] D. T. Brown, “Error detecting and correcting binary codes
for arithmetic operations,” IRE Transactions on Electronic
Computers, no. 3, pp. 333–337, 1960.

[10] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam,
K. Gopalakrishnan, and R. S. Shenoy, “Overview of can-
didate device technologies for storage-class memory,” IBM
Journal of Research and Development, vol. 52, no. 4.5, pp.
449–464, 2008.

[11] M. Butler, T.-Y. Yeh, Y. Patt, M. Alsup, H. Scales, and
M. Shebanow, “Single instruction stream parallelism is
greater than two,” in ACM SIGARCH Computer Architecture
News, vol. 19, no. 3. ACM, 1991, pp. 276–286.

[12] C. CaBcaval and D. A. Padua, “Estimating cache misses and
locality using stack distances,” in Proceedings of the 17th
annual international conference on Supercomputing. ACM,
2003, pp. 150–159.

[13] B. H. Calhoun, A. Wang, and A. Chandrakasan, “Modeling
and sizing for minimum energy operation in subthreshold
circuits,” IEEE Journal of Solid-State Circuits, vol. 40, no. 9,
pp. 1778–1786, 2005.

[14] B. Cao, C.-H. Chang, and T. Srikanthan, “A residue-to-
binary converter for a new five-moduli set,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 54,
no. 5, pp. 1041–1049, 2007.

[15] G. Cardarilli, M. Re, and R. Lojacono, “Rns-to-binary
conversion for efficient vlsi implementation,” IEEE Trans-
actions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 45, no. 6, pp. 667–669, 1998.

[16] S. Carlough, A. Collura, S. Mueller, and M. Kroener, “The
ibm zenterprise-196 decimal floating-point accelerator,” in
Computer Arithmetic (ARITH), 2011 20th IEEE Symposium
on. IEEE, 2011, pp. 139–146.

[17] C.-H. Chang, A. S. Molahosseini, A. A. E. Zarandi, and
T. F. Tay, “Residue number systems: A new paradigm to
datapath optimization for low-power and high-performance
digital signal processing applications,” IEEE circuits and
systems magazine, vol. 15, no. 4, pp. 26–44, 2015.

[18] J.-S. Chiang and M. Lu, “Floating-point numbers in residue
number systems,” Computers & Mathematics with Ap-
plications, vol. 22, no. 10, pp. 127–140, 1991.

[19] R. Chokshi, K. S. Berezowski, A. Shrivastava, and S. J.
Piestrak, “Exploiting residue number system for power-
efficient digital signal processing in embedded processors,”
in Proceedings of the 2009 international conference on Com-
pilers, architecture, and synthesis for embedded systems.
ACM, 2009, pp. 19–28.

[20] S. CPU2006, “Standard performance evaluation corpora-
tion,” 2006.

[21] B. Deng, S. Srikanth, E. R. Hein, P. G. Rabbat, T. M. Conte,
E. DeBenedictis, and J. Cook, “Computationally-redundant
energy-efficient processing for y’all (creepy),” in Reboot-
ing Computing (ICRC), IEEE International Conference on.
IEEE, 2016, pp. 1–8.

[22] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous,
and A. R. LeBlanc, “Design of ion-implanted mosfet’s with
very small physical dimensions,” IEEE Journal of Solid-
State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[23] E. D. Di Claudio, G. Orlandi, and F. Piazza, “A systolic
redundant residue arithmetic error correction circuit,” IEEE
Transactions on Computers, vol. 42, no. 4, pp. 427–432,
1993.

[24] E. D. Di Claudio, F. Piazza, and G. Orlandi, “Fast combina-
torial rns processors for dsp applications,” IEEE transactions
on computers, vol. 44, no. 5, pp. 624–633, 1995.

[25] S. Dolev, S. Frenkel, D. E. Tamir, and V. Sinelnikov,
“Preserving hamming distance in arithmetic and logical
operations,” Journal of Electronic Testing, vol. 29, no. 6,
pp. 903–907, 2013.

[26] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner et al., “Razor:
A low-power pipeline based on circuit-level timing spec-
ulation,” in Microarchitecture, 2003. MICRO-36. Proceed-
ings. 36th Annual IEEE/ACM International Symposium on.
IEEE, 2003, pp. 7–18.

[27] M. Etzel and W. Jenkins, “Redundant residue number sys-
tems for error detection and correction in digital filters,”
IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 28, no. 5, pp. 538–545, 1980.

[28] C. Fetzer, U. Schiffel, and M. Süßkraut, “An-encoding
compiler: Building safety-critical systems with commodity
hardware,” in International Conference on Computer Safety,
Reliability, and Security. Springer, 2009, pp. 283–296.

[29] P. Forin, “Vital coded microprocessor principles and applica-
tion for various transit systems,” IFAC Control, Computers,
Communications, pp. 79–84, 1989.

[30] D. Gamberger, “New approach to integer division in residue
number systems,” in Computer Arithmetic, 1991. Proceed-
ings., 10th IEEE Symposium on. IEEE, 1991, pp. 84–91.

[31] H. L. Garner, “The residue number system,” IRE Transac-
tions on Electronic Computers, no. 2, pp. 140–147, 1959.

[32] S. Ghosh, P. Ndai, and K. Roy, “A novel low overhead
fault tolerant kogge-stone adder using adaptive clocking,”
in Design, Automation and Test in Europe, 2008. DATE’08.
IEEE, 2008, pp. 366–371.

[33] V. T. Goh and M. U. Siddiqi, “Multiple error detection
and correction based on redundant residue number systems,”
IEEE Transactions on Communications, vol. 56, no. 3, 2008.

[34] O. Goldreich, D. Ron, and M. Sudan, “Chinese remaindering
with errors,” in Proceedings of the thirty-first annual ACM
symposium on Theory of computing. ACM, 1999, pp. 225–
234.

[35] J. González and A. González, “Limits of instruction level
parallelism with data speculation,” in Proc. of the VECPAR
Conf. Citeseer, 1998, pp. 585–598.

[36] K. C. Gower, B. Hazelzet, M. W. Kellogg, and D. J.
Perlman, “High reliability memory module with a fault
tolerant address and command bus,” Jun. 19 2007, uS Patent
7,234,099.

[37] M. S. Gupta, K. K. Rangan, M. D. Smith, G.-Y. Wei,
and D. Brooks, “Decor: A delayed commit and rollback
mechanism for handling inductive noise in processors,”
in High Performance Computer Architecture, 2008. HPCA
2008. IEEE 14th International Symposium on. IEEE, 2008,
pp. 381–392.

[38] N. Z. Haron and S. Hamdioui, “Redundant residue num-
ber system code for fault-tolerant hybrid memories,” ACM
Journal on Emerging Technologies in Computing Systems
(JETC), vol. 7, no. 1, p. 4, 2011.

67

[39] A. A. Hiasat and H. Abdel-Aty-Zohdy, “Semi-custom vlsi
design and implementation of a new efficient rns division
algorithm,” The Computer Journal, vol. 42, no. 3, pp. 232–
240, 1999.

[40] M. A. Hitz and E. Kaltofen, “Integer division in residue
number systems,” IEEE transactions on computers, vol. 44,
no. 8, pp. 983–989, 1995.

[41] Y.-M. Hsu and E. Swartzlander, “Time redundant error
correcting adders and multipliers,” in Defect and Fault
Tolerance in VLSI Systems, 1992. Proceedings., 1992 IEEE
International Workshop on. IEEE, 1992, pp. 247–256.

[42] C. Y. Hung and B. Parhami, “Fast rns division algorithms
for fixed divisors with application to rsa encryption,” In-
formation Processing Letters, vol. 51, no. 4, pp. 163–169,
1994.

[43] S. Iacobovici, “End-to-end residue based protection of an
execution pipeline,” Jun. 30 2009, uS Patent 7,555,692.

[44] IBM, “Ibm power system e880 server, an ibm power8
technology-based system, addresses the requirements of an
industry-leading enterprise class system,” 2014.

[45] B. W. Johnson, J. H. Aylor, and H. H. Hana, “Efficient use of
time and hardware redundancy for concurrent error detection
in a 32-bit vlsi adder,” IEEE journal of solid-state circuits,
vol. 23, no. 1, pp. 208–215, 1988.

[46] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist open-
page: A dram page-mode scheduling policy for the many-
core era,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM,
2011, pp. 24–35.

[47] R. S. Katti, “A new residue arithmetic error correction
scheme,” IEEE transactions on computers, vol. 45, no. 1,
pp. 13–19, 1996.

[48] O. Keren, I. Levin, V. Ostrovsky, and B. Abramov, “Arbitrary
error detection in combinational circuits by using partition-
ing,” in Defect and Fault Tolerance of VLSI Systems, 2008.
DFTVS’08. IEEE International Symposium on. IEEE, 2008,
pp. 361–369.

[49] R. Keyes, “Miniaturization of electronics and its limits,” IBM
Journal of Research and Development, vol. 32, no. 1, pp.
84–88, 1988.

[50] A. I. Khan, C. W. Yeung, C. Hu, and S. Salahuddin,
“Ferroelectric negative capacitance mosfet: Capacitance tun-
ing & antiferroelectric operation,” in Electron Devices
Meeting (IEDM), 2011 IEEE International. IEEE, 2011,
pp. 11–3.

[51] A. I. Khan, K. Chatterjee, J. P. Duarte, Z. Lu, A. Sachid,
S. Khandelwal, R. Ramesh, C. Hu, and S. Salahuddin,
“Negative capacitance in short-channel finfets externally
connected to an epitaxial ferroelectric capacitor,” IEEE
Electron Device Letters, vol. 37, no. 1, pp. 111–114, 2016.

[52] A. I. Khan and S. Salahuddin, “4 extending cmos with
negative capacitance,” CMOS and Beyond: Logic Switches
for Terascale Integrated Circuits, pp. 56–76, 2015.

[53] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee, “Using prime
numbers for cache indexing to eliminate conflict misses,” in
Software, IEE Proceedings-. IEEE, 2004, pp. 288–299.

[54] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and
extensible dram simulator,” IEEE Computer Architecture
Letters, vol. 15, no. 1, pp. 45–49, 2016.

[55] E. Krekhov, A.-r. A. Pavlov, A. Pavlov, P. Pavlov,
D. Smirnov, A. Tsar’kov, P. Chistopol’skii, A. Shandrikov,
B. Sharikov, and D. Yakimov, “A method of monitoring
execution of arithmetic operations on computers in com-
puterized monitoring and measuring systems,” Measurement
Techniques, vol. 51, no. 3, pp. 237–241, 2008.

[56] H. Krishna, B. Krishna, K.-Y. Lin, and J.-D. Sun, Com-
putational Number Theory and Digital Signal Processing:
Fast Algorithms and Error Control Techniques. CRC Press,
1994, vol. 6.

[57] H. Krishna, K.-Y. Lin, and J.-D. Sun, “A coding theory ap-
proach to error control in redundant residue number systems.
i. theory and single error correction,” IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal
Processing, vol. 39, no. 1, pp. 8–17, 1992.

[58] H.-H. Lee, Y. Wu, and G. Tyson, “Quantifying instruction-
level parallelism limits on an epic architecture,” in Perfor-
mance Analysis of Systems and Software, 2000. ISPASS.
2000 IEEE International Symposium on. IEEE, 2000, pp.
21–27.

[59] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “Mcpat: an integrated power, area,
and timing modeling framework for multicore and manycore
architectures,” in Microarchitecture, 2009. MICRO-42. 42nd
Annual IEEE/ACM International Symposium on. IEEE,
2009, pp. 469–480.

[60] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,
“Cacti-p: Architecture-level modeling for sram-based struc-
tures with advanced leakage reduction techniques,” in
Computer-Aided Design (ICCAD), 2011 IEEE/ACM Inter-
national Conference on. IEEE, 2011, pp. 694–701.

[61] D. Lipetz and E. Schwarz, “Self checking in current floating-
point units,” in Computer Arithmetic (ARITH), 2011 20th
IEEE Symposium on. IEEE, 2011, pp. 73–76.

[62] C.-K. Liu, “Error-correcting-codes in computer arithmetic,”
DTIC Document, Tech. Rep., 1972.

[63] H.-Y. Lo and T.-W. Lin, “Parallel algorithms for residue
scaling and error correction in residue arithmetic,” Wireless
Engineering and Technology, vol. 4, no. 04, p. 198, 2013.

[64] M. Lu and J.-S. Chiang, “A novel division algorithm for the
residue number system,” IEEE Transactions on Computers,
vol. 41, no. 8, pp. 1026–1032, 1992.

[65] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
building customized program analysis tools with dynamic
instrumentation,” in Acm sigplan notices, vol. 40, no. 6.
ACM, 2005, pp. 190–200.

[66] F. J. MacWilliams and N. J. A. Sloane, The theory of error-
correcting codes. Elsevier, 1977.

[67] D. Marienfeld, E. S. Sogomonyan, V. Ocheretnij, and
M. Gossel, “New self-checking output-duplicated booth
multiplier with high fault coverage for soft errors,” in Test
Symposium, 2005. Proceedings. 14th Asian. IEEE, 2005,
pp. 76–81.

[68] J. Mathew, S. Banerjee, P. Mahesh, D. Pradhan, A. Jabir, and
S. Mohanty, “Multiple bit error detection and correction in
gf arithmetic circuits,” in Electronic System Design (ISED),
2010 International Symposium on. IEEE, 2010, pp. 101–
106.

[69] A. McMenamin, “The end of dennard scaling,” 2013.
[70] E. Mizan, T. Amimeur, and M. F. Jacome, “Self-imposed

temporal redundancy: An efficient technique to enhance the
reliability of pipelined functional units,” in Computer Archi-
tecture and High Performance Computing, 2007. SBAC-PAD
2007. 19th International Symposium on. IEEE, 2007, pp.
45–53.

[71] P. V. A. Mohan, “Rns-to-binary converter for a new three-
moduli set,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 54, no. 9, pp. 775–779, 2007.

[72] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical,
transparent operating system support for superpages,” ACM
SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 89–
104, 2002.

[73] M. Nicolaidis, “Carry checking/parity prediction adders and
alus,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 11, no. 1, pp. 121–128, 2003.

[74] M. Nicolaidis and H. Bederr, “Efficient implementations
of self-checking multiply and divide arrays,” in European
Design and Test Conference, 1994. EDAC, The European
Conference on Design Automation. ETC European Test Con-
ference. EUROASIC, The European Event in ASIC Design,
Proceedings. IEEE, 1994, pp. 574–579.

[75] M. Nicolaidis and R. Duarte, “Design of fault-secure parity-
prediction booth multipliers,” in Design, Automation and
Test in Europe, 1998., Proceedings. IEEE, 1998, pp. 7–
14.

[76] D. E. Nikonov and I. A. Young, “Overview of beyond-cmos
devices and a uniform methodology for their benchmarking,”
Proceedings of the IEEE, vol. 101, no. 12, pp. 2498–2533,
2013.

68

[77] G. A. Orton, L. E. Peppard, and S. E. Tavares, “New
fault tolerant techniques for residue number systems,” IEEE
transactions on computers, vol. 41, no. 11, pp. 1453–1464,
1992.

[78] J. H. Patel and L. Y. Fung, “Concurrent error detection in
alu’s by recomputing with shifted operands,” IEEE Trans.
Computers, vol. 31, no. 7, pp. 589–595, 1982.

[79] S. Peng and R. Manohar, “Fault tolerant asynchronous
adder through dynamic self-reconfiguration,” in Computer
Design: VLSI in Computers and Processors, 2005. ICCD
2005. Proceedings. 2005 IEEE International Conference on.
IEEE, 2005, pp. 171–178.

[80] V. Ramachandran, “Single residue error correction in residue
number systems,” IEEE transactions on computers, vol. 32,
no. 5, pp. 504–507, 1983.

[81] J. Ramirez, A. Garcia, S. Lopez-Buedo, and A. Lloris, “Rns-
enabled digital signal processor design,” Electronics Letters,
vol. 38, no. 6, pp. 266–268, 2002.

[82] T. R. Rao, “Biresidue error-correcting codes for computer
arithmetic,” IEEE Transactions on computers, vol. 100,
no. 5, pp. 398–402, 1970.

[83] W. Rao and A. Orailoglu, “Towards fault tolerant parallel
prefix adders in nanoelectronic systems,” in Design, Automa-
tion and Test in Europe, 2008. DATE’08. IEEE, 2008, pp.
360–365.

[84] W. Rao, A. Orailoglu, and R. Karri, “Fault identification in
reconfigurable carry lookahead adders targeting nanoelec-
tronic fabrics,” in Test Symposium, 2006. ETS’06. Eleventh
IEEE European. IEEE, 2006, pp. 63–68.

[85] B. R. Rau, “Pseudo-randomly interleaved memory,” in ACM
SIGARCH Computer Architecture News, vol. 19, no. 3.
ACM, 1991, pp. 74–83.

[86] M. Sachdev, “Fault-tolerant memory address decoder,”
Nov. 3 1998, uS Patent 5,831,986.

[87] S. Salahuddin and S. Datta, “Can the subthreshold swing in
a classical fet be lowered below 60 mv/decade?” in Electron
Devices Meeting, 2008. IEDM 2008. IEEE International.
IEEE, 2008, pp. 1–4.

[88] U. Schiffel, A. Schmitt, M. Süßkraut, and C. Fetzer, “Anb-
and anbdmem-encoding: detecting hardware errors in soft-
ware,” in International Conference on Computer Safety,
Reliability, and Security. Springer, 2010, pp. 169–182.

[89] A. Sengupta and B. Natarajan, “Performance of systematic
rrns based space-time block codes with probability-aware
adaptive demapping,” IEEE Transactions on Wireless Com-
munications, vol. 12, no. 5, pp. 2458–2469, 2013.

[90] Z. Sperber, O. Levy, M. Mishaeli, and R. Gabor, “Recov-
erable parity and residue error,” Dec. 9 2014, uS Patent
8,909,988.

[91] S. Srikanth, B. Deng, and T. M. Conte, “A brief survey
of non-residue based computational error correction,” arXiv
preprint arXiv:1611.03099, 2016.

[92] C.-C. Su and H.-Y. Lo, “An algorithm for scaling and single
residue error correction in residue number systems,” IEEE
Transactions on Computers, vol. 39, no. 8, pp. 1053–1064,
1990.

[93] J.-D. Sun and H. Krishna, “A coding theory approach
to error control in redundant residue number systems. ii.
multiple error detection and correction,” IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal
Processing, vol. 39, no. 1, pp. 18–34, 1992.

[94] J.-D. Sun, H. Krishna, and K. Lin, “A superfast algorithm
for single-error correction in rrns and hardware implemen-
tation,” in Circuits and Systems, 1992. ISCAS’92. Proceed-
ings., 1992 IEEE International Symposium on, vol. 2. IEEE,
1992, pp. 795–798.

[95] Y. Sun, M. Zhang, S. Li, and Y. Zhao, “Cost effective soft
error mitigation for parallel adders by exploiting inherent
redundancy,” in IC Design and Technology (ICICDT), 2010
IEEE International Conference on. IEEE, 2010, pp. 224–
227.

[96] R. M. Swanson and J. D. Meindl, “Ion-implanted com-
plementary mos transistors in low-voltage circuits,” IEEE
Journal of Solid-State Circuits, vol. 7, no. 2, pp. 146–153,
1972.

[97] A. Sweidan and A. A. Hiasat, “On the theory of error control
based on moduli with common factors,” Reliable computing,
vol. 7, no. 3, pp. 209–218, 2001.

[98] N. S. Szabo and R. I. Tanaka, Residue arithmetic and its
applications to computer technology. McGraw-Hill, 1967.

[99] S. Talahmeh and P. Siy, “Arithmetic division in rns using
galois field gf (p),” Computers & Mathematics with
Applications, vol. 39, no. 5-6, pp. 227–238, 2000.

[100] M. Talluri and M. D. Hill, Surpassing the TLB performance
of superpages with less operating system support. ACM,
1994, vol. 29, no. 11.

[101] Y. Tang, E. Boutillon, C. Jégo, and M. Jézéquel, “A
new single-error correction scheme based on self-diagnosis
residue number arithmetic,” in Design and Architectures for
Signal and Image Processing (DASIP), 2010 Conference on.
IEEE, 2010, pp. 27–33.

[102] T. F. Tay and C.-H. Chang, “A new algorithm for single
residue digit error correction in redundant residue number
system,” in Circuits and Systems (ISCAS), 2014 IEEE Inter-
national Symposium on. IEEE, 2014, pp. 1748–1751.

[103] ——, “A non-iterative multiple residue digit error detection
and correction algorithm in rrns,” IEEE transactions on
computers, vol. 65, no. 2, pp. 396–408, 2016.

[104] T. N. Theis, “(keynote) in quest of a fast, low-voltage digital
switch,” ECS Transactions, 45(6), 3-11, 2012.

[105] T. N. Theis and P. M. Solomon, “In quest of the “next
switch”: prospects for greatly reduced power dissipation in a
successor to the silicon field-effect transistor,” Proceedings
of the IEEE, vol. 98, no. 12, pp. 2005–2014, 2010.

[106] M. Valinataj and S. Safari, “Fault tolerant arithmetic opera-
tions with multiple error detection and correction,” in Defect
and Fault-Tolerance in VLSI Systems, 2007. DFT’07. 22nd
IEEE International Symposium on. IEEE, 2007, pp. 188–
196.

[107] D. P. Vasudevan and P. K. Lala, “A technique for modular
design of self-checking carry-select adder,” in Defect and
Fault Tolerance in VLSI Systems, 2005. DFT 2005. 20th
IEEE International Symposium on. IEEE, 2005, pp. 325–
333.

[108] D. P. Vasudevan, P. K. Lala, and J. P. Parkerson, “Self-
checking carry-select adder design based on two-rail encod-
ing,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 54, no. 12, pp. 2696–2705, 2007.

[109] J. Von Neumann, “Probabilistic logics and the synthesis of
reliable organisms from unreliable components,” Automata
studies, vol. 34, pp. 43–98, 1956.

[110] J. Von Neumann, A. W. Burks et al., “Theory of self-
reproducing automata,” IEEE Transactions on Neural Net-
works, vol. 5, no. 1, pp. 3–14, 1966.

[111] U. Wappler and C. Fetzer, “Hardware failure virtualization
via software encoded processing,” in Industrial Informatics,
2007 5th IEEE International Conference on, vol. 2. IEEE,
2007, pp. 977–982.

[112] R. W. Watson and C. W. Hastings, “Self-checked compu-
tation using residue arithmetic,” Proceedings of the IEEE,
vol. 54, no. 12, pp. 1920–1931, 1966.

[113] H. Xiao, H. K. Garg, J. Hu, and G. Xiao, “New error control
algorithms for residue number system codes,” ETRI Journal,
vol. 38, no. 2, pp. 326–336, 2016.

[114] L. Xiao and X.-G. Xia, “Error correction in polynomial
remainder codes with non-pairwise coprime moduli and
robust chinese remainder theorem for polynomials,” IEEE
Transactions on Communications, vol. 63, no. 3, pp. 605–
616, 2015.

[115] S.-S. Yau and Y.-C. Liu, “Error correction in redundant
residue number systems,” IEEE Transactions on Computers,
vol. 100, no. 1, pp. 5–11, 1973.

[116] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon, “Rsa speedup
with chinese remainder theorem immune against hard-
ware fault cryptanalysis,” IEEE Transactions on computers,
vol. 52, no. 4, pp. 461–472, 2003.

[117] P. Yin and L. Li, “A new algorithm for single error cor-
rection in rrns,” in Communications, Circuits and Systems
(ICCCAS), 2013 International Conference on, vol. 2. IEEE,
2013, pp. 178–181.

[118] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based
page interleaving scheme to reduce row-buffer conflicts and
exploit data locality,” in Proceedings of the 33rd annual
ACM/IEEE international symposium on Microarchitecture.
ACM, 2000, pp. 32–41.

69

70

Appendix A

Early and Unpublished RRNS and
Superstrider Work

Below is a collection of both published and unpublished work that was done on the RRNS-based ar-
chitecture and the early PIMS architecture. Optimal Adiabatic Scaling and Processor-in-Memory-
and-Store Architecture (OAS+PIMS) was published in the 2015 IEEE/ACM International Sympo-
sium on Nanoscale Architectures. The papers, titled Computationally-Redundant Energy-Efficient
Processing for Y?all (CREEPY) and Energy Efficiency Limits of Logic and Memory, were pub-
lished in the IEEE International Conference on Rebooting Computing, 2016. The rest of the work
included in this section are short reports that were not published, but were generated as project
documentation. Note that the paper titled Representing real numbers in a Redundant Residual
Number System (RRNS) based computer is a draft that was submitted, but never accepted for pub-
lication.

71

69978-1-4673-7849-9/15/$31.00 c⃝2015 IEEE

72

70 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)

73

2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) 71

74

72 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)

75

2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) 73

76

74 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)

77

Energy Efficiency Limits of Logic and Memory

Sapan Agarwal1, Jeanine Cook2*, Erik
DeBenedictis2, Michael P. Frank2

1Microsystems Science and Technology
2Center for Computing Research

Sandia National Laboratories
Albuquerque, NM, USA

*corresponding author jeacook@sandia.gov

Gert Cauwenberghs3; Sriseshan Srikanth4, Bobin
Deng4, Eric R. Hein4, Paul G. Rabbat4,

Thomas M. Conte4;
3Department of Bioengineering, Jacobs School of

Engineering, and Institute for Neural Computation,
University of California San Diego, La Jolla, CA,

4 Schools of CS and ECE
Georgia Institute of Technology, Atlanta GA

Abstract—We address practical limits of energy efficiency

scaling for logic and memory. Scaling of logic will end with
unreliable operation, making computers probabilistic as a side
effect. The errors can be corrected or tolerated, but overhead will
increase with further scaling. We address the tradeoff between
scaling and error correction that yields minimum energy per
operation, finding new error correction methods with energy
consumption limits about 2u below current approaches. The
maximum energy efficiency for memory depends on several other
factors. Adiabatic and reversible methods applied to logic have
promise, but overheads have precluded practical use. However,
the regular array structure of memory arrays tends to reduce
overhead and makes adiabatic memory a viable option. This
paper reports an adiabatic memory that has been tested at about
85u improvement over standard designs for energy efficiency.
Combining these approaches could set energy efficiency
expectations for processor-in-memory computing systems.

Keywords—Moore’s Law, Shannon, Landauer, limits of
computing, adiabatic, reversible, reversible logic, millivolt switch

I. INTRODUCTION
We address an apparently novel tradeoff between two well-

known issues. Semiconductor scaling is widely known to
reduce energy consumption today, but it will eventually lead to
a rise in errors due to insufficient energy to distinguish between
0s and 1s. Algorithm-Based Fault Tolerance (ABFT) and error
correction are well-known methods that allow logic and
memory to function in the presence errors, albeit with
progressively more overhead as the error rate rises. We discuss
how continued scaling will initially reduce energy
consumption, but scaling beyond an optimal point will cause
energy to increase again due to the overhead of handling the
errors. This paper finds two error correction methods that
reduce minimum energy consumption for logic, yet finds a
different approach that is more suitable to memory.

When Moore’s Law was formulated in the 1960s [1], it
projected practical, manufacturable semiconductor technology
from that point in time into the future. In the same decade,

theorists identified energy efficiency limits for computer
technology [2] that were unimaginably far ahead of the
technology of the day. The big gap led to 50 years of
exponential growth. Now in the 2010s, we find the energy
efficiency of manufactured devices being in the range of 10u to
10,000u above the theoretical limits.

Device size is approaching theoretical limits as well.
However, the expected change from 2D to 3D manufacturing
will allow module-level density to rise and further exacerbate
energy efficiency challenges.

Each 2u scaling generation enables new products for a few
years in the huge global information technologies (IT) sector.
Given the stakes, it would be useful to find the endpoint of
scaling more accurately than just 10u-10,000u beyond where
we are now.

The best known work on minimum dissipation is due to
Landauer [2], who stated that the minimum energy is typically
on the order of kT for each irreversible logic operation. The
expression kT | 4u10−21 joules at room temperature comprises
Boltzmann’s constant k times the absolute temperature T.
Landauer’s minimum is a very solid lower bound yet often
misinterpreted; another paper at this conference analyzes this
issue [3].

Today’s Complementary Metal-Oxide Semiconductor
(CMOS) can never reach Landauer’s minimum, but it is
important to know how close it can come. CMOS is a term that
denotes both a complementary pull-up/pull-down logic circuit
and the MOSFET transistor. The CMOS circuit design is very
simple, but the circuit’s simplicity forces the charging and
discharging of capacitors defining signal values directly from
DC power supplies. The simple charging circuit limits energy
efficiency to what is called the Landauer-Shannon limit [4] that
is about 50u higher than Landauer’s minimum.

However, the transistors have issues as well. Roadmaps for
transistors project additional reduction in power supply voltage
for a device class called millivolt switches. This phrase refers
to devices that could operate in CMOS-like circuits below the
limits of MOSFET devices. MOSFETs are limited to
ln(10) kT/q | 60 mV/decade sub threshold slope, which
prevents practical operation below about 0.5 V. While a
specific MOSFET replacement with steeper slope has not been
selected for full-scale development, Tunnel FETs and

Approved for unclassified unlimited release SAND2016-7245 C.
Research supported by Sandia National Laboratories, a multiprogram
laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the US Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000

978-1-5090-1370-8/16/$31.00 ©2016 IEEE

78

Piezotronic FETs are candidates. If scaling continues after
these devices go into production, technology should be able to
reach the Landauer-Shannon limit (and we argue it can go
further).

The theoretical minimum energy for CMOS Boolean logic
has been studied by considering the wires between logic gates
as communications links and applying Shannon’s
communications theory, but we will argue this does not find
the true minimum. Just as a cell phone picks up more and more
static as it moves further from the transmitter tower, the
theoretical minimum energy of a Boolean Logic gate is not a
single number but a function of the acceptable error
probability. The earliest analysis the authors can find [4] yields
the familiar expression Pe = exp(−Esignal / kT) 1 . Modern
textbooks [5, p. 595] sometimes use the asymptotically
equivalent complementary error function (erfc). The erfc
version appears in [6] as applicable to minimum energy for
CMOS, however Theis and Solomon follow their analysis with
the statement “[a]s thermal voltage fluctuations become
significant, we must incorporate redundancy and error
correction in the logic to keep the error rate in bounds” [6].

There is about a 50u “end zone” to energy scaling that this
paper begins to address with error correction. CMOS circuits
made of extremely good millivolt switches should be able to
reach the Landauer-Shannon limit of Pe = exp(−Esignal / kT), but
clever circuits will be needed to get closer to Landauer’s
minimum of kT. The historical literature contains
(unimplemented) examples of designs [4] [7], supporting the
idea that such approaches are possible and we find some here.

There are methods of correcting gate errors without
concern to energy consumption. For example, Triple Modular
Redundancy (TMR) [8] votes the results of three redundant
calculations and uses the winner as the answer. This is
effective, but more than triples the gate count and hence
energy. Another class of techniques is called Algorithm-Based
Fault Tolerance (ABFT) [9], which typically performs a full
calculation and an estimate. For example, the estimate might be
just the least significant bit of the full computation. The
calculation is repeated if the two do not match. ABFT may
have low overhead, but the versions in the literature are
specific to just one algorithm rather than applying generally.

To the knowledge of the authors, this is the first paper to
connect the exponential error probability Pe = exp(−Esignal / kT)
with error correction overhead. For example, cutting signal
energy in half (Esignal’ = Esignal/2) will cut gate energy in half but
change Pe’ = �Pe. If error correction can square the error
probability for less than a factor of two in overhead, the energy
efficiency can rise above the Landauer-Shannon limit.

Reversible computing [10] is a second approach to beating
energy efficiency limits, yet it faced practical limitations in the
past. Reversible computing can use existing MOSFET
transistors, yet uses different circuits that recycle energy.
Readers are referred to [11] for extensive additional details, but
the principle for energy efficiency scaling is to recycle a rising
fraction of the energy as the technology improves. One

1 The Landauer-Shannon limit is usually written as Esignal = kT ln(1/Pe)

generation might recycle 99% of operating energy, drawing
only the remaining 1% from the power supply. A few
generations later, 99.9% might be recycled with 0.1% drawn
from the power supply. And so forth.

There have been challenges in applying reversible
computing to logic, but there is progress in the area including a
paper at this conference by Snider et. al. [12]. The circuitry
needed to recycle energy is more complicated than
conventional Boolean logic, using more transistors in some
approaches and using large numbers of clock signals in others.
The cost to power a processor over its lifetime has recently
started to exceed the purchase cost, making more complexity a
good investment if it can lower energy consumption.

Reversible computing principles can be applied to memory
as well, which is being reported in this paper. Complexity has
different meanings for memory and logic. Memories are
divided into addressing logic and a memory storage array.
While smaller storage cells are preferred, the user wants the
largest possible array for a given storage cell size. This is
because the array holds the data that is valuable to the user. As
long as the addressing logic is small compared to the memory
array, the user will not care about its complexity. Logic
associated with memory addressing is a large consumer of
energy in current computer systems, so making the addressing
more energy efficient is a priority as long as it does not
increase complexity very much.

In section IV, we report on a memory using adiabatic
principles that has been measured as reducing energy by 85u (i.
e. recovers a fraction 84/85 of the delivered energy drawn from
the power supply) owing to resonant energy exchange.

II. REDUNDANT RESIDUE NUMBER SYSTEMS
This section shows that an RRNS-based processor can

exceed the energy efficiency predicted by the Landauer-
Shannon limit. A companion paper in these same proceedings
[13] describes the Computationally-Redundant Energy-
Efficient Processing for Y’all (CREEPY) architecture.
CREEPY uses a n=4 sub cores to represent ~32-bit numbers
using a Residue Number System (RNS), with one residue per
sub core. CREEPY also has r=2 additional redundant sub cores
that extend the RNS into a Redundant RNS (RRNS) and allow
detection and correction of a single logic error. The RRNS was
developed in [14], but that paper did not consider energy
efficiency.

CREEPY (or any RRNS processor) can be used as a
baseline for comparisons by ignoring both the energy
consumption of the redundant sub cores and their ability to
correct errors, a method developed in [15] for general circuits.
The energy efficiency of the baseline can be improved by
reducing Esignal and increasing the energy efficiency of the
underlying gates up to the Landauer-Shannon limit in [4] and
[5, p. 595], as described above. Any single error that occurs
with probability Pe = exp(−Esignal / kT) per gate operation would
cause a system failure. However, [6] suggests that
incorporation of redundancy and error correction might be
helpful to further increase energy efficiency.

79

Nfn exp(−Esignal / kT)
E n(G fn)2 exp(−2N/G* Esignal / kT)

Pu(Esignal)
Pu’(Esignal’)

CREEPY can then model redundancy and error correction
by including the energy consumption of the redundant sub
cores and assuming they will correct single errors. In this case,
a system failure occurs only when two or more errors occur
within a time window. The analysis below shows that
redundancy and error correction can help. If Esignal is lowered
the precise amount that keeps overall system energy unchanged
given the additional gates, the probability of a system failure
declines—at least in some useful operating ranges. If the
baseline was operating at the Landauer-Shannon limit, the
RRNS version would operate below the limit.

Consider the baseline system where each of n residues is
implemented by G gates, so the baseline comprises N = Gn
gates. While the baseline does not check or correct errors, we
will derive the error probability on batches of fn sequential
arithmetic operations, using notation consistent with [13].
Since all errors will be undetected, the probability of an
undetected error per batch as a function of Esignal is

� Pu(Esignal) = Nfn exp(−Esignal / kT).� ����

Now consider the additional r redundant residues for a total
of t = n+r residues, and an additional R = Gr gates. This RRNS
circuit will be distinguished by primes (’) and operated with a
signal energy Esignal’. The probability of an undetectable double
error in a batch will be

� Pu’(Esignal’) = ½ t(t−1) (G fn)2 exp(−2Esignal’ / kT),� ����

which are the ½ t(t−1) combinations of two residues being in
error multiplied by the square of the probability of each residue
being in error over the time of an entire batch. We are not
detecting or correcting errors at this point; errors just become
inconsistent encodings of the RRNS residues.

Assume the single error detection and correction is
performed once for each batch of fn operations by a circuit
comprising C gates. We will not model the gates explicitly, so
C will be an equivalent value.

The two circuits will consume the same total energy if we
set

� Esignal’ = N / (N+R+C/fn) Esignal.� ����

The ratio of the two error probabilities above form a figure
of merit M if the probabilities are computed at constant total
energy, which can be the result of adjusting the signal energies
of the two circuits to match as in (3)

� M = _________.� ����

The figure of merit can be expressed either as a function of
Esignal’ or Esignal. We choose Esignal. If we designate
E = ½ t(t−1)/n as an RRNS property and G* = N + R + C/fn, (4)
becomes

� M =___________________________.� ����

Now (5) simplifies to

� M = 1/(E� Gfn) exp ((2N−G*)/G* Esignal / kT).� ����

The error detection yields benefit when M is greater than 1,
or beyond the break even point. Shifting to the inequality and
taking the logarithm of both sides yields

� 0 < ln(1/(E��Gfn)) +(2N−G*)/G* Esignal / kT,� ����

which can be solved for signal energy in units of kT as

� Esignal / kT > ln(E��Gfn) G*/(2N−G*), or� ����

� Esignal’ / kT > ln(E��Gfn) N/(2N−G*).� ����

Let us explore the range of situations where RRNS is
helpful in raising energy efficiency. Assume the number of
logic gates in a residue calculation is G = 2000, a number used
in [13]. The example number system from [14] used in [13]
uses n=4, r=2, and therefore E = 3.75, N = Gn = 8,000, and
R = Gr = 4,000. From an inspection of diagrams in [14], let us
assume detection and correction is equivalent to 3 arithmetic
operations or 12 residue operations. This implies
C = 12G = 24,000.

The spreadsheet in Table I shows RRNS can raise energy
efficiency as long as the signal energies are above the break
even point. As long as fn is more than 10 or so, the break even
signal energies are below anything useful in a design, so the
break even point is not an obstacle. Even though Table I
establishes the boundary where energy efficiency rises, the
specific numbers in Table 1 are the point where RRNS makes
precisely no difference.

Based on the fn = 100 reliability analysis in the companion
paper [13], we conclude RRNS gives benefit in at least one

TABLE I. RRNS BREAK EVEN

Parameters Break even
f n N R C e s ignal / kT e s ignal' / kT

7 8,000 4,000 24,000 293.45 152.16
8 8,000 4,000 24,000 165.03 88.02
9 8,000 4,000 24,000 122.32 66.72

10 8,000 4,000 24,000 101.03 56.13
11 8,000 4,000 24,000 88.30 49.81
12 8,000 4,000 24,000 79.85 45.63
25 8,000 4,000 24,000 51.76 31.95
50 8,000 4,000 24,000 45.50 29.17

100 8,000 4,000 24,000 44.04 28.78
G n r const �

2000 4 2 12 3.75

80

example situation. The scenario above as analyzed in [13]
shows a sharp increase in reliability between Esignal’ = 42 and
43 kT. Table I shows the break even point for fn = 100 to be
Esignal’ = 28.78 kT, which is lower.

A short discussion may be in order on how to extend the
approach. The Shannon-Landauer “limit” has merit, yet we
found an exploitable property. Scaling causes a linear reduction
in energy consumption but an exponential rise in raw error rate.
We searched for a low-overhead error-correction approach and
checked to see if there could be a net savings in energy before
the exponential dominated. The steepness of the exponential
was crucial to how far we could push, e. g. we should have
been able to push further with a gentler polynomial but a step
function would have been impenetrable. Simply reducing the
supply voltage to a semiconductor circuit causes it to fail
uncontrollably, which is like a step function. Thus the onset of
thermal noise is a special case not expected to be seen before
the end of scaling. The authors have no idea how far this could
go; it may be the equivalent of one semiconductor generation.

III. TEMPORAL ERROR CORRECTION
The authors propose a second form of error correction

using samples collected over time, which also reduces
minimum energy below the Landauer-Shannon limit.
Typically, the wire from one gate’s output to another’s input is
modeled as a communications channel. This is shown in Fig.
1A where a wire connects a driving gate through a hypothetical
switch to the combined capacitance C of the wire and the next
gate’s input [6]. The capacitance is charged and then the switch
opened. The disconnection leaves a reset noise of voltage kT/C
on the input of the gate being analyzed, meeting the Landauer-

Shannon limit of Pe = exp(−Esignal / kT) on the gate’s output.

Now imagine that the switch in Fig. 1A is thrown back and
forth several times. Since the capacitance would charge to its
proper value on the first cycle, later cycles would not consume
additional energy. However, the analysis in [6] would be
independently valid on each cycle, yielding the same data
value but a different sample of the random reset noise.
Applying error correction to multiple samples could reduce the
error probability—or keep the error probability unchanged
while reducing the gate energy. We show an error correction
method below that allows more energy to be saved in the logic
than is consumed by error correction. The switch is extraneous;
it can be left closed all the time or replaced by a wire.

This does not violate the communications theory analysis
as the wire between stages will also conduct noise from the
receiver’s gate backwards though the wire and ultimately to the
output gate’s power supply. The equivalent circuit model is
shown in Fig. 1B in enough detail to convey the basic idea. If
Ron, R1, and R2 are large, it should be clear that the input of the
gate being analyzed will have noise voltage kT/Ci. If Ron, R1,
and R2 are small or shorts, they connect the three capacitors
Cps, Cwire, and Ci in parallel and the noise voltage drops to kT /
(Cps+Cwire+Ci). The R’s will never be 0 or f ohms in practice,
but this effect seems not to have been considered before.

This type of error correction will need to be applied to
multiple levels of logic to amortize the overhead of the error
correction circuit. Fig. 1C shows this method being applied to a
field of gates in blue organized as a rectangle with m logic
levels and n rows, each row comprising an input gate, m−2
intermediate gates, and an output. We assume the signal from
any given input will affect more than one output, fanning out
by a factor F as it goes from one logic level to the next.
Similarly, an output will be controlled by multiple inputs, with
a fan-in factor of F at each level. Each of the n outputs will
need to have its own error correction circuit and so we will
consider the energy of one row at a time. Data applied to the
inputs is transformed to output data in m time steps equal to the
propagation delay of a gate, with no error correction between
logic levels.

Fig. 1C represents both the baseline and error corrected
cases. The baseline circuit comprises only the blue graphics,
which are operated at signal energy Esignal, using the same
terminology as section II. The error corrected case includes the
blue graphics operating at a reduced signal energy �Esignal’
followed by the error correction circuitry in red operating at the
original signal energy Esignal. We define Esignal = β Esignal’.

The example in Fig. 1C uses majority voting over three
samples for error correction, but the analysis below uses
majority voting of α samples, α t 3 and odd. The inputs must
remain stable for least α steps so the outputs can be sampled at
the end of steps m, m+1…m+α−1. The propagation delay time
is approximately the same as the minimum time needed to get
independent error samples. The samples could also be taken by
using a single device with a low-pass filter (large capacitance)
that averages the signal over multiple propagation delay times.

Cps

Driving gate and
equivalent

Other gates, wire capacitance

Gate
being

analyzed
R1 R2

Vdd

GND

S1

S2
Cwire Ci

Ron

Flip flop,
delay, etc.

Fig. 1. Temporal error correction

A. Circuit from [Theis 10]:

B. System application:

MAJ

Other outputs

Inputs

…m Logic level 1 2

F fan
out

Signal energy Esignal E Esignal

Equivalent to C gates

Driving
gate

C

Gate being
analyzed

C. System application:

81

A. Error rate Pu of a row of the baseline circuit
For both error rate and energy calculations, let thermal

noise cause a gate to generate an erroneous signal with
probability p. The signal will then propagate to the right,
spreading to additional rows by a factor of F each time it
moves from one layer to the next. This means the uncorrected
error rate from the rightmost blue gate will be the probability
of error in a given gate times number of parent gates, N, that
fan in to an output:

� praw(p) = p N� �11�

where:

 N = (Fm−1+ … F2 + F + 1) = (Fm−1)/(F −1). � �12��

For the baseline error calculation with no error correction,
p = exp(−Esignal / kT) and

� Pu(Esignal) = N exp(−Esignal / kT) � �13��

B. Error rate of a row of the error-corrected circuit (Pu’)
For the calculation with error correction, an undetected

error results when a majority of the α samples of the blue logic
circuitry are erroneous. However, an undetected error could
also result from an error in the red error correction circuit itself.
We will call this probability q. The probability of an
undetected error is then:

� � � �

qe

qeexEP

kT

E

x

x

kT

Ex

kT

E

�
¸
¸
¸

¹

·

¨
¨
¨

©

§
u¸
¹
·

¨
©
§ �

|

�
¸
¸
¸

¹

·

¨
¨
¨

©

§
�u

¸
¸
¸

¹

·

¨
¨
¨

©

§
u

�

�

�

�
��

¦

2
1

'

2
1

1''

signalu

signal

signalsignal

2
1,

1,''

D

D

D

DD

D

N

NN

C

C
 (14)

where � �x,DC is the number of ways to choose x of the α
samples.

The error correction circuit is shown in red in Fig. 1,
comprises of two latches and a majority gate. Let us model the
circuit as C gates per sample α, where the energy per gate is
E�Esignal’. The probability of an error occurring in the correction
circuit itself is:

� kT

E

eCq
'signalE

D
�

u � �15��

So the undetected error rate is

� � kT

E

kT

E

eCeEP
'2

1
'

signalu

signalsignal

2
1,''

E
D

DDD
�

�

�
u�

¸
¸
¸

¹

·

¨
¨
¨

©

§
u¸
¹
·

¨
©
§ �

| NC �16��

We can find the error corrected signal energy, Esignal’, required
to get the same error rate as the baseline circuit by setting (13)
equal to (16):

� � »
¼

º
«
¬

ª
¸
¹
·

¨
©
§ �

�
�

�
�

�
�

|
2

1,ln
1

2ln
1
1

1
2' signalsignal

DD
DD

D
D

CkTkTEE N

 (17)

Here we assumed the number of error correction gates is much
less than the number of gates in the logic, Cα ≪N, and
simplifed the result.

C. Energy E’ of a row of the error corrected circuit
To calculate the total energy used in a row of error-

corrected logic, we need to add the energy consumption of the
baseline circuit (blue only in Fig. 1) to compute the correct
result, E0’, the energy of the error correction circuit, EC’, and
the energy due to errors, Ex’.

The energy of the logic is given by the signal energy Esignal’
times the number of gates in a row:

� E0’ = m Esignal’.� �18��

The energy for the error correction circuit is the number of
error correction gates times βEsignal’:

� EC
’ = C×α×E×Esignal’� �19��

Next, consider the energy drawn from the power supply by
an ideal CMOS circuit due to thermal errors, Ex’ in a single
row. Let us assume a thermal error occurs with probability p.
Errors in gates on the left side of the network will each
propagate to F rows as they go from layer to layer until they
reach level m. An error takes twice the signal energy (an error
signal and then a return signal) from the power supply at each
level. The number of errors per logic level in one row of the
blue gates in Fig. 1C will be:

� p, p(F+1), p(F2+F+1), ... p(Fm−1+Fm−2...1).� �20��

The series above can be summed and simplified, yielding
an expression for the number of errors in the gates of Fig. 1C
per row.

� Nerr = p E = p [(F m−1)/(F −1)2 – (m+1)/(F −1)],� �21��

which defines E as a constant related only to logical circuit
structure. The energy due to errors is given by:

 Ex’ = 2 α p E Esignal’� �22��

where 2α originates from 2 signal transitions per error
times α samples. Thus the total switching energy is:

82

 E’= E0’+ EC’+ Ex’= (m+C×α×E+2 α p E�×Esignal’ (23)

D. Energy of a row of the baseline circuit (E)
The energy consumption of the baseline circuit (blue only in
Fig. 1) will be the signal energy to compute the correct result,
E0, assuming no errors plus the energy, Ex, due to errors.
Clearly,

� E0 = m Esignal� �24��

and in the baseline case, p = exp(−Esignal / kT), so

� Ex = Esignal exp(−Esignal / kT) E� �25��

with the sum of equations (24) and (25) being the energy of the
baseline, uncorrected, circuit.

Fig. 2 plots energies for circuit representative of a 16u16
bit multiplier with three samples for error correction. The
circuit is modeled by m=48 layers of logic with F = 321/m such
that an error propagates to at most 32 outputs (which is all the
outputs that exist on the multiplier). The error correction circuit
is modeled by C=α gates. The horizontal axis is the baseline
signal energy; an engineer would assess end-user requirements
and pick a signal energy for an uncorrected circuit on the basis
of perror = exp(−Esignal / kT). For example, this signal energy
might be 60-100 kT for a supercomputer but only 40 kT for a
consumer device.

The top magenta (E) and dark blue (E’) curves represent
system energy without and with error correction respectively.
The magenta curve for E is represents the exponential
Landauer-Shannon limit, although accounting for error
propagation. Error correction allows signal energy to be
reduced at the expense of overhead for the error correction
logic. The dark blue curve (E’) shows total system energy at
constant error rate. The blue curve is lower on the right of the

graph, asymptotically approaching about 2:1 reduction in
energy for the 7-input gate case. The error correction stops
working below 15 kT or so, meaning the error-corrected circuit
consumes more energy for the same output error rate.

The limiting factor at low signal energy for error correction
is illustrated by the yellow (Ex’+Ec’) curve representing energy
consumed by the errors and error correction circuitry. The
blue-green (Ex) curve represents the energy consumed by the
errors themselves in the uncorrected case. The number of
errors rises exponentially as signal energy drops. Furthermore,
errors propagate through the circuit with fanout such that each
error produces a large number of downstream errors in the
circuit. Both the yellow and green curves include an
exponential rise when moving to the left.

We conclude that there is an opportunity to exceed the
purported Landauer-Shannon limit. However, the upside
potential depends on many variables. Even ideal millivolt
switches that have no leakage will consume power due to the
energy of creating and propagating thermal errors. This effect
becomes dominant for logic nets operating below 20 kT in this
example but varies based on fanout and circuit depth.

IV. ADIABATIC CHARGE-RECYCLING MEMORY
Aside from energy efficiency improvements resulting from

monolithic integration of memory and logic, adiabatic charge-
recycling has been explored to further increase energy
efficiency for matrix-vector multiplication in massively
parallel connectionist neural computation [16]. It saves
substantial energy by conserving charge through capacitive
coupling, rather than destructive charge transfer.

Here, we investigate the energy efficiency of the same
adiabatic charge-recycling circuit when used in a memory.
Since the proposed memory uses the same adiabatic circuit that
was fabricated, tested, and reported as a neural network array
processor [16], will report on its performance in the context of

Fig. 2. Modeling of temporal error correction, D=3 and 7

A. 2 of 3 voting (D=3); energy advantage ~1.6 B. 4 of 7 voting (D=7); energy advantage ~2.0

1.00E-22

1.00E-21

1.00E-20

1.00E-19

1.00E-18

1.00E-17

1.00E-16

10 12 13 16 18 21 24 28 33 38 45 52 60

E
ne

rg
y (

J)

Baseline signal energy (kT)

1.00E-22

1.00E-21

1.00E-20

1.00E-19

1.00E-18

1.00E-17

1.00E-16

10 12 13 16 18 21 24 28 33 38 45 52 60

E
ne

rg
y

(J
)

Baseline signal energy (kT)

E'

E

Ex'+Ec'

Ex

83

a memory by reinterpreting past experimental results.

Memories dissipate energy in the addressing logic,
capacitance between row and column conductors and ground,
and in storage devices. The approach illustrated in Fig. 3
reduces all these energy losses by recovering energy
recirculating between electrostatic and inductive forms in an
LC tank circuit at its resonant oscillation frequency.

Fig. 3A illustrates the principle using a small memory array
with columns in green, rows in orange, and charge-injection
device (CID) storage cells in grey rectangles. Each CID cell is
abstracted as an open circuit for a 0 and full-charge capacitive
coupling for a 1. The current flow path for a read cycle is
shown in blue. Energy stored in the inductor is connected to
one row at a time through the addressing switch. The
remainder of the circuit is an arrangement of one or four
capacitors depending on the state of the storage cell. The blue-
indicated elements form a tank circuit, which will oscillate at
its resonant frequency. The principle of adiabatic resonant
energy recovery is as follows: As long as the timing of the
opening and closing of the addressing switch is properly
synchronized with the oscillation, the resonant energy in the
tank is conserved as charge is circulated, except for minor
energy losses due to parasitic resistances.

Output data is sensed from the columns by a charge-
sensitive amplifier. The amplifier detects a voltage change
when the CID is in the fully charged capacitive form, but there
is no voltage in the open circuit form.

The CID cell is realized by two charge-coupled MOSFETs
in series (Fig. 3B, upper). The two MOSFET gates are
connected to the row and column conductors. Since the two
MOSFETs are isolated from their surroundings except for
purely capacitive output coupling, charge is mostly conserved.
Charge in the yellow isolation area in Fig. 3B can leak out
through the gate oxide or reverse biased diodes that may exist
in the substrate area, but this leakage is relatively slow and can
be addressed with DRAM-like refresh (at Hz to kHz rates).

The CID-equivalent circuit (Fig. 3B, lower) changes from
an open circuit to a nonlinear capacitor based on charge in the
isolation region. With no stored charge (Q=0) both transistors
are in a non-conductive state, and the equivalent circuit is an

open circuit. On the other hand, a fully charged cell (Q=Qmax)
effectively couples all its charge between the gates.

A memory chip would have single inductor for many banks
with one row driven in each, in which case the tank’s capacitor
comprises total capacitance of the fully charged CID cells in all
the selected rows at a given instant. The total capacitance and
therefore the resonant frequency depends on the stored data. It
is critical that the LC tank is maintained at its resonance peak
for most efficient energy recovery.

The adiabatic circuit described above was fabricated and
measured [16] as a 256u256 array multiplier, which would
have similar circuit characteristics to a memory chip with 256
banks. Fig. 4 shows the impact of the energy recycling. The
upper red lines are without energy recycling, which makes
them comparable to production memories. With recycling
turned on and tuned, energy consumption shown by the blue
curves dropped by up to 85u, peaking when half the selected
CID cells were storing 0 and the other half storing 1.

The adiabatic resonant energy recovery principle applies
specifically to charge-based memory storage with capacitive
readout, as described above. It readily extends to other memory
types where charge can be inherently conserved—however,
emerging resistive memory technologies such as memristor
(ReRAM), PCRAM, and MRAM crossbars are inherently
lossy and do not permit adiabatic energy recovery.

V. DISCUSSION
Both error correction methods above rely on cooperation

across multiple technology levels. Moore’s Law presupposed
improvement only at the individual device level, assuming it
would be a “rising tide that lifts all ships” without redesign of
the ships. However, the error correction methods above
recognize that the desirable reduction in size and energy of
devices results in an undesirable increase in error rate. These
errors cannot be corrected at the device level with increasing
energy levels, but the aggregate result of these errors can be
corrected at higher levels of a computer’s technology stack.

Crow Ccol Out

CID cells

C of
other
arrays

Columns

Rows

A. Adiabatic memory system:

B. Charge Injection Device (CID) cell:

Write
circuitry

Charge isolation area

Q=0 Q =
Qmax

Cgate

Fig. 3. Principle and simplified diagram of adiabatic charge-recovery
memory.

Addressing
switch

resonance

Dynamic

Adiabatic

resonance

capacitive load

CID array

Fig. 4. Adiabatic energy recovery versus ratio of 0s and 1s in data[16].

84

The RRNS example uses mathematics to allow occasional
errors to be corrected. Temporal error correction uses more
than one gate’s worth of energy to fix an error, but it can be
applied to many gates at a time—leading to net advantage.

We can construct error correctoin schemes that beat the
Landauer-Shannon limit, but we do not know the limits of the
approach. Some applications require extremely reliable
computing at the user level, such as Exascale supercomputers
that may not make a single mistake over a multi-year lifetime.
The simple analyses in this paper suggest 2u advantage for
supercomputers. On the other hand, users watching video on a
smartphone are likely to tolerate a bad pixel once in a while so
the reliability requirements are less. The energy reduction due
to error correction will be less in this case.

The RRNS example in section II was based on number
system devised in 1965 for significantly different purpose. A
separate paper in this conference details work in devising
number systems and architectures that may perform better [13].
However, we do not know the potential of the approach.

The temporal error correction in section III was susceptible
to direct analysis. It had two energy levels: Esignal’ for the logic
and Esignal for the correction circuitry. In the opinion of the
authors, temporal error correction to reduce energy is unlikely
to become a specific circuit or device. It seems more likely that
a computerized design tool might be able to optimize a logic
layout for low energy by applying algorithms to each gate.

Adiabatic memory shows significant promise in an unusual
area. The memory in today’s computers does not produce
much heat, but there is a lot of interest in computer applications
that use a lot of data. In conjunction with emerging 3D
manufacture of logic or memory, it is possible that today’s low
power single-layer memories will evolve to hundred-layer
modules that dissipate a hundred times as much power. After a
100u rise, memory would no longer be low power. This would
create a demand for energy-efficient memories such as
described.

VI. CONCLUSIONS
By simple arithmetic, an Exascale supercomputer needs an

uncorrected gate-level reliability equivalent to an Esignal of
around 60 kT to avoid silent errors over its lifetime. In this
range, the error correction described in this paper could reduce
overall energy by around 2u, for a effective energy of 30 kT.
Using [17] as reference, logic is heading towards an energy of,
say, 10,000 kT per operation. Subject to evolution of transistors
into millivolt switches (which is not assured), the remaining
improvement would be 10,000 / 30 | 300u.

Reversible logic seems to be emerging as a practical option
for continued scaling, including both reversible processors [12]
and the discussion of reversible memory in this article. It is
likely that the energy efficiency of memories will improve as
Moore’s Law progresses, yet the CV2 energy in the
row/column lines will limit energy efficiency. The adiabatic
approach discussed in this paper demonstrated an 85u boost in
a laboratory demonstration that could be further improved. The
energy reduction from adiabatic operation would combine
multiplicatively with the improvement due to Moore’s Law.

More study of the limits of current technology would seem
indicated. The semiconductor industry spends billions of
dollars on new fab lines to get each additional 2u energy
efficiency. Theory work on error correction appears from this
paper seem capable of getting the same result at reduced cost.

Continued research on millivolt switches is indicated. This
paper shows the devices would make even more of a
contribution than currently expected if accompanied by error
correction.

Memory is moving to 3D now, which has obvious benefits
for both energy efficiency and applications that may need to
use a lot of memory. However, device physics research would
be needed for memory cells that avoid dissipating large
amounts of power during reads and write—such as the open
circuit/capacitor CID cell discussed in the paper.

REFERENCES
[1] G. Moore, "Cramming more components onto integrated circuits,

Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff."
[2] R. Landauer, "Irreversibility and heat generation in the computing

process," IBM journal of research and development 5.3 (1961): 183-191.
[3] E. DeBenedictis, M. Frank, N. Ganesh, N. G. Anderson, “A path toward

ultra-low-energy computing,” International Conference on Rebooting
Computing, 2016.

[4] M. Neyman, "The negentropy principle in information-processing
systems," Telecommunications and Radio Engineering 21 (1966): 68.

[5] J. Bellamy, Digital telephony (Wiley Series in Telecommunications and
Signal Processing), Wiley-Interscience, 2000.

[6] T. Theis and P. Solomon, ‘In quest of the “next switch”: prospects for
greatly reduced power dissipation in a successor to the silicon field-
effect transistor,’ Proceedings of the IEEE 98.12 (2010): 2005-2014.

[7] R. Keyes and R. Landauer, "Minimal energy dissipation in logic," IBM
Journal of Research and Development 14.2 (1970): 152.

[8] Robert Lyons and Wouter Vanderkulk, "The use of triple-modular
redundancy to improve computer reliability," IBM Journal of Research
and Development 6.2 (1962): 200-209.

[9] Kuang-Hua Huang and Jacob A. Abraham, "Algorithm-based fault
tolerance for matrix operations," IEEE transactions on computers 100.6
(1984): 518-528.

[10] C. Bennett, “Logical reversibility of computation,” IBM Journal of Re-
search and Development 17.6 (1973): 525-532.

[11] M.P. Frank, “Reversibility for efficient computing,” Ph. D. thesis,
Massachusetts Institute of Technology, 1999.

[12] César O. Campos-Aguillón, et. al., “A Mini-MIPS microprocessor for
adiabatic computing,” International Conference on Rebooting
Computing, 2016.

[13] B. Deng, et. al., “Computationally-Redundant Energy-Efficient
Processing for Y’all (CREEPY),” International Conference on
Rebooting Computing, 2016.

[14] R. Watson and C. Hastings, "Self-checked computation using residue
arithmetic," Proceedings of the IEEE 54.12 (1966): 1920-1931.

[15] E. DeBenedictis and H. Zima, "Millivolt switches will support better
energy-reliability tradeoffs," Energy Efficient Electronic Systems (E3S),
2015 Fourth Berkeley Symposium on. IEEE, 2015.

[16] R. Karakiewicz, R. Genov, and G. Cauwenberghs, "1.1 TMACS/mW
fine-grained stochastic resonant charge-recycling array processor,"
Sensors Journal, IEEE 12.4 (2012): 785-792.

[17] D. Frank, “Reversible adiabatic classical computation—an overview,”
2nd IEEE Rebooting Computing Summit, 2014, slide 23;
http://rebootingcomputing.ieee.org/images/files/pdf/7-rcs2-adiabatic-
reversible-5-14-14.pdf.

85

Computationally-Redundant Energy-Efficient
Processing for Y’all (CREEPY)

Bobin Deng∗, Sriseshan Srikanth∗, Eric R. Hein†,
Paul G. Rabbat† and Thomas M. Conte∗†

∗School of Computer Science
†School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332, USA

Email: {bdeng, seshan, heine, prabbat3, conte}@gatech.edu

Erik DeBenedictis‡ and Jeanine Cook‡
‡Center for Computing Research

Sandia National Laboratories
Albuquerque, NM, USA

Email: {epdeben, jeacook}@sandia.gov

Abstract—Dennard scaling has ended. Lowering the voltage
supply (Vdd) to sub volt levels causes intermittent losses in signal
integrity, rendering further scaling (down) no longer acceptable
as a means to lower the power required by a processor core.
However, if it were possible to recover the occasional losses
due to lower Vdd in an efficient manner, one could effectively
lower power. In other words, by deploying the right amount
and kind of redundancy, we can strike a balance between
overhead incurred in achieving reliability and savings realized by
permitting lower Vdd. One promising approach is the Redundant
Residue Number System (RRNS) representation. Unlike other
error correcting codes, RRNS has the important property of
being closed under addition, subtraction and multiplication. Thus
enabling correction of errors caused due to both faulty storage
and compute units. Furthermore, the incorporated approach uses
a fraction of the overhead and is more efficient when compared
to the conventional technique used for compute-reliability.

In this article, we provide an overview of the architecture
of a CREEPY core that leverages this property of RRNS and
discuss associated algorithms such as error detection/correction,
arithmetic overflow detection and signed number representation.
Finally, we demonstrate the usability of such a computer by
quantifying a performance-reliability trade-off and provide a
lower bound measure of tolerable input signal energy at a gate,
while still maintaining reliability.

I. INTRODUCTION

Dennard scaling [6] has been one of the main phenomena
driving efficiency improvements of computers through sev-
eral decades. The main idea of this law is that transistors
consume the same amount of power per unit area as they
scale down in size. However, leakage current and threshold
voltage limits have caused Dennard scaling to end [2]. This
essentially negates any performance benefits that Moore’s law
may provide in the future; power considerations dictate that a
higher transistor density results in either a lower clock rate or
a reduction in active chip area.

In this paper, we propose a scalable architectural technique
to effectively extend the performance benefits of Moore’s law.
We enable reducing the supply voltage beyond conservative
thresholds by efficiently correcting intermittent computational
errors that may arise from doing so. Energy benefits are
observed as long as the overhead incurred in error correction is
less than that saved by lowering Vdd. Furthermore, it may also

be possible to lower energy by using marginal/post-CMOS
devices, but such devices may sometimes be unreliable (due
to tunneling effects, for instance [1]). The CREEPY approach
of introducing error correcting hardware to lower energy is
therefore deemed beneficial.

Figure 1 depicts a prior study conducted by one of the
authors that estimates the potential of such a CREEPY com-
puting paradigm in the future.

Fig. 1: Energy consequences of the fact that the error
probability increases exponentially with decrease in signal
energy. Here, the term ECC encapsulates any error correction
mechanism in general.

We first provide some mathematical background that forms
the basis of our proposed architecture.

II. BACKGROUND

A. Triple Modular Redundancy (TMR)

The conventional approach to computational fault tolerance
is TMR [9]; the idea is to replicate the hardware twice (for
a sum total of three computations per computation) and then
take a majority vote. With a model that assumes that at most
one of these three computations can be in error at any given
point in time, it follows that at least two of the computations
are error-free; this can thus be used to detect and correct a
single error, assuming an error-free voter.

While simple to understand and implement, this introduces
an overhead of 200% in area and power, which leaves plenty
of room for improvement. Any energy savings from lowering

978-1-5090-1370-8/16/$31.00 © 2016 IEEE

86

TABLE I: A (4, 2)-RRNS example with the simplified base set (3, 5, 2, 7, 11, 13).
Range is 210, with 11 and 13 being the redundant bases.

Decimal mod 3 mod 5 mod 2 mod 7 mod 11 mod 13
13 1 3 1 6 2 0
14 2 4 0 0 3 1

13+14=27 (1+2)mod 3=0 2 1 6 5 1
All columns (residues) function independently of one another.

An error in any one of these columns (residues) can be
corrected by the remaining columns.

Vdd and/or using post-CMOS devices would be eclipsed due
to this overhead in correcting resultant errors.

B. Residue Number System (RNS)

The Residue Number System [7] has been used as an
alternative to the binary number system chiefly to speed up
computation, especially in signal processors [4], [5], [11].
This increased efficiency comes from the fact that a large
integer can be represented using a set of smaller integers,
with arithmetic operations permissible on the set in parallel
(with the exception of division, comparison and binary bit
manipulation). We present some of the properties of an RNS
system without proof.

Let B = {mi ∈ N for i = 1, 2, 3, ..., n} be a set of n
co-prime natural numbers, which we shall refer to as bases or
moduli. M =

∏n
i=1 mi defines the range of natural numbers

that can be injectively represented by an RNS system that is
defined by the set of bases B. Specifically, for x such that
x ∈ N, x < M , then, x ≡ (|x|m1

, |x|m2
, |x|m3

, ..., |x|mn
),

where |x|m = x mod m. Each term in this n-tuple is referred
to as a residue.

We also note that addition, subtraction and multiplication
are closed under RNS. This is because of the following
observation: given x, y ∈ N, x, y < M , we have |x op y|m =
||x|m op |y|m|m, where op is any add/subtract/multiply oper-
ation. Unsupported arithmetic operations (including division),
thereby, would incur a performance and energy overhead; such
operations should be carefully handled by the compiler, the
specifics of which warrant further research and are beyond
the scope of this paper.

C. Redundant Residue Number System (RRNS)

To augment RNS with fault tolerance, r redundant bases
are introduced [8], [12], [13]. The set of moduli now contains
n non-redundant and r redundant moduli: B = {mi ∈
N for i = 1, 2, 3, ..., n, n + 1, ..., n + r}. The reason these
extra bases are redundant is because any natural number
smaller than M (=

∏n
i=1 mi) can still be represented uniquely

by its n non-redundant residues. Intuitively, the r redundant
residues form a sort of an error code because of the fact
that all residues are transformed in an identical manner under
arithmetic operations. For x such that x ∈ N, x < M ,
then, x ≡ (|x|m1

, |x|m2
, |x|m3

, ..., |x|mn
, |x|mn+1

, ..., |x|mr
)

contains n non-redundant residues as well as r redundant
residues.

Upon applying arithmetic transformations to an RRNS num-
ber, any error that occurs in one of the residues is contained

within that residue and does not propagate to other residues.
When required, such an error can be corrected with the help
of the remaining residues. Specifically, an RRNS system with
(n, r) = (4, 2), a single errant residue can be corrected, or,
two errant residues can be detected. Table I provides a simple
example, Section IV-D outlines necessary algorithms to do the
single error correction. Research by Watson and Hastings [8],
[12], [13] lays the foundation for the underlying theoretical
framework that is used and extended in our work. We use (199,
233, 194, 239, 251, 509) as our (4, 2)-RRNS system, providing
a range M = 199×233×194×239 ∈ (231, 232). These RRNS
moduli were chosen to fit in 8-bit or 9-bit registers.

It can be seen that a redundant residue number system
achieves a higher efficiency due to enhanced bit-level paral-
lelism while also providing resilience with only 50% overhead.
As the granularity of an error is that of an entire residue, RRNS
is capable of potentially correcting multi-bit errors as well.
Moreover, RRNS could efficiently handle the error chaining
problem; if we are summing up an array and a single add is in
error, we can fix the final sum at the end with a single check.

We now design a computer using these properties.

III. CREEPY OVERVIEW

Given the potential of marginal devices, i.e., post-
CMOS/millivolt switches that are conducive to lowering volt-
ages (reliability deprecates, but gracefully), CREEPY aims
to achieve lower energy in high throughput exascale HPC
systems by lowering the supply voltage while efficiently
correcting the resulting errors.

Subcore
1

Modulus	
199

SC2
M=233

SC3
M=194

SC4
M=239

SC5
M=251

SC6
M=509

Residue	 Interaction	 Unit(RIU):consistency	 checking,	 comparison,	 RRNS	 to	 binary	 conversion,	 etc.

Non-Redundant Moduli Redundant Moduli Verified
Addr/Data

Instruction	 Register(IR)

ICache DCache

Memory

Core

Fig. 2: The CREEPY Core with the reference RRNS system.
The register file and data cache are distributed across subcores.

A CREEPY core consists of 6 subcores, an Instruction
Register (IR) and a Residue Interaction Unit (RIU), as depicted
in Figure 2.

87

Each subcore is fault-isolated from the others because it
is designed to operate on a single residue of data. This
can be thought of as analogous to a bit-slice processor.
After posting a successful instruction fetch (the instruction
cache stores instructions in binary, and is ECC protected),
the checked instruction is dispatched onto the 6 subcores,
which then proceed to operate on their corresponding slice
of data. For example, adding two registers is done on a per
residue basis; the register file is itself distributed across the 6
subcores. Similarly, the data cache is also distributed across
the 6 subcores and stores RRNS protected data. The RIU is
then responsible to perform any operations that involve more
than a single residue, such as RRNS consistency checking,
comparison and conversion to binary.

CREEPY employs standard ECC[10] to protect the main
memory because of ECC’s compactness and efficiency when
it comes to protecting stored data. As such, both data and
instructions are simply 32 bits each, not counting their ECC
protection. However, the 32 bit representation of data is in
RNS form (as opposed to binary). The memory controller
checks ECC on a processor load and generates the two
redundant residues before loading data into the last level cache.
Similarly, it generates ECC upon a processor store (and the
redundant residues are not stored into the main memory).

The focus of this paper is on the architecture of a com-
putationally error tolerant core/processing element and not on
ECC techniques for reliable storage.

IV. CREEPY CORE DESIGN

In this section, we present several aspects of a CREEPY
core design.

A. Instruction Set Architecture(ISA)

In order to simplify instruction fetch and decode stages, all
instructions are fixed to 32 bits wide. The ISA expects 32
registers (R0-R31), with R0 hard-wired to zero, R30 being
the link register and R31 storing the default next PC (R31 =
PC + 4). In our micro-architecture, each register is 49 bits
long (i.e., it contains the RRNS redundant residues as well)
and is sliced on a per-modulus (sub-core) basis. The data cache
is also implemented in a similar manner, as it stores data in
an RRNS format. We discuss the formats of several important
CREEPY instructions in the remaining part of this section.

1) R-Format (ADD/SUB/MUL)
These instructions assume that the destination operand
as well as both source operands are registers.

Opcode Src Reg1 Src Reg2 Dest Reg Reserved
6b 5b 5b 5b 11b

2) I-Format (ADDI/SUBI/MULI)
For instructions that require compiler generated imme-
diate literals, two new instructions (that always occur
in succession without exception) are defined. Telescopic
op-codes are employed to facilitate implementation of
such set instructions. The fundamental need for the set
instruction arises from the fact that literals are 49 bit

RRNS values and would not otherwise simply fit within
a 32 bit field (next to an immediate instruction, for
example).
Set123 sets the the first 3 residues of the immediate
value into the first 3 sub-core slices of the destination
register and Set456 sets the remaining 3 residues of the
immediate value into the other three sub-core slices of
the destination register.

Opcode Dest Reserved Residue3 Residue2 Residue1
11[2b] 5b 0[1b] 8b 8b 8b

Opcode Dest Residue6 Residue5 Residue4
11[2b] 5b 9b 8b 8b

For an example, consider the immediate instruction Addi
R1, R2, 0x020202020202. A CREEPY program would
implement this instruction as follows:

a) Set123 R3, 020202
b) Set456 R3, 020202
c) Add R1, R3, R2

3) Branch

Opcode Reg1 Reg2 Reg3 Link Reserved
6b 5b 5b 5b 1b 10b

Recall that R0 = 0, R31 = PC + 4 and that R30 is
the link register. A CREEPY branch follows one of the
following semantics:

a) Reg1 = R0 and Reg3 = R0 and Link = 0: An
unconditional branch that always jumps to the
address in Reg2.

b) Link = 0: A conditional branch that jumps to the
address in Reg2 (base) + Reg3 (offset) if Reg1 is
0. This is otherwise known as a beqz instruction.

c) Link = 1: A branch and link instruction to enable
sub-routine calls and returns. The default next PC
is stored into the link register and the program
jumps to the address in Reg2.

4) Load/Store

Opcode Reg1 Reg2 Reg3 Reserved
6b 5b 5b 5b 11b

Reg3 is the destination for a load and also is the source
register for a store. The source/destination address for a
load/store is given by Reg1 (base) + Reg2 (offset). Note
that the memory address is hereby stored in an RRNS
format.
Helper instructions such as mov etc. also exist, but are
omitted from this description for brevity.

B. Error Model

First, we distinguish fault, error and failure as follows:
Fault: A single bit flips, but is not stuck-at, i.e., only

intermittent / transient faults are considered. Causes may range

88

from unreliable devices to low supply voltage to particle
strikes to random noise and any combination therein.

Error: One or more faults in a single residue that show up
during a consistency check.

Failure: The system has at least one error that it cannot
detect, or has detected and cannot correct.

Faults may lead to errors which may lead to failures. We
can guarantee the system is reliable if at most one error per
core occurs between two consistency checks.

Redundancy in time, i.e., check at cycle x, check again
at cycle y, check again at cycle z, and vote, does not apply
to this model as it is possible that the three checks suffer 3
independent 1 bit faults, rendering voting useless. The transient
clause in the model rules out stuck-at faults. An implication
of this is that we cannot achieve reliability by merely trading
performance alone. Additional resources in terms of spatial
redundancy are necessary, which is exactly what has been
designed.

Different components of the core are protected via special-
ized means that target each component. The guiding prin-
ciple is to design a system that uses the more efficient of
RRNS/ECC based redundancy based on the range and nature
of data being protected. Where both techniques are deemed
insufficient to prevent the fault from metastasizing into an
error, and eventually into a failure, the more conventional (and
expensive) method: Triple Modular Redundancy (TMR), is
employed. An alternative is to prevent the fault from occurring
in the first place by using high Vdd (and/or circuit hardening).
Choosing optimally between the latter expensive techniques is
beyond the scope of this paper, but we assume that control
signals’ integrity is ensured using either TMR or intelligent
state assignment, and that the RIU uses a high Vdd / hardened
circuitry.

C. Signed Numbers Representation

In this section, we describe three competing ways of im-
plicitly representing signed numbers, the first two of which
were proposed by Waston [12], which we term Complement
M ×MR and Complement M representations, where, M is
the product of all the non-redundant moduli (M = m1 ×
m2×m3×m4) and MR is the product of all the redundant
moduli (MR = m5 × m6). To make up for the fact that
Complement M ×MR breaks the error correction algorithms
and that Complement M is generally poor in performance,
we propose a third approach, which we refer to as Excess-M2
representation.

1) Complement M ×MR Signed Representation
The M × MR complement signed representation is
depicted by Figure 3. To provide a few examples, 0
is represented by 0, 1 is represented by 1, M

2 − 1 is
represented by M

2 −1, -1 is represented by M×MR−1
and −M

2 is represented by M × MR − M
2 . As can

be seen, this is similar to signed binary representation.
However, the known error correction algorithms break
if numbers are represented in this manner.

+integers -integerserror region

M/20 M*MR-M/2 M*MR

Fig. 3: Complement M ×MR signed representation
2) Complement M Signed Representation

The complement M signed representation is depicted
in Figure 4. This is similar to the M ×MR method,
except that the wrap-around occurs at M as opposed
to M ×MR. This representation does not break error
correction algorithms, provided that some correction
factors (scaling and offset) are applied to the result of
each arithmetic operation. However, further analysis in-
dicates that calculating these correction factors 1 require
knowledge of the signs of the operands, which is not
explicitly known and sign determination in RRNS is a
time-consuming process.

+integers -integers error region

M/2=-M/20 M M*MR

Fig. 4: Complement M signed representation
3) Excess-M2 Signed Representation

The Excess-M2 signed representation is shown in Figure
5. The excess notation, sometimes known as offset
notation, merely shifts each number by M

2 . To further
elaborate, 0 is represented by M

2 , 1 is represented by
M
2 + 1 and -1 is represented by M

2 − 1. Similar to the
M Complement representation, the results of arithmetic
operations must be offset by a correction factor before
they can be corrected. However, these correction factors
turn out to be independent of the sign of the operands.
So this method has great potential to improve the
performance.
From the simulation results in V-D, we choose Excess-
M
2 to be the defacto signed representation scheme for

CREEPY.

-integers +integers error region

M/2=00 M M*MR

Fig. 5: Excess-M2 signed representation
D. Residue Interaction Unit (RIU) Algorithms

The algorithm for single error correction was originally
given by Watson [12]. However, RNS renders arithmetic
overflow detection to be a non-trivial exercise. Furthermore,
published work lacks sufficient details on the workings of
overflow detection. In addition to providing a high level
overview of the error correction algorithm, this section also
presents algorithms for overflow detection. Furthermore, since
the proposed algorithms augment the consistency checking
algorithm itself, no extra hardware is warranted beyond that
required by the error check.

1Correction factors are necessary to transform the results of an arithmetic
operation before they can be checked for consistency. Details have been
omitted due to space constraints.

89

1) Single Error Detection and Correction Algorithm: The
single error detection and correction algorithm proposed by
Watson [12] is based on an error correction table. The working
steps of this algorithm for a system with 4 non-redundant
moduli (m1,m2,m3,m4) and 2 redundant moduli (m5,m6),
for any given integer X (X < M = m1m2m3m4) is as
follows: (a) Use a base-extension algorithm to compute |X ′|m5

and |X ′|m6 , where |X|m=X mod m. (b) For i = 5, 6: compute
∆mi = |X ′|mi − |X|mi . (c) A non-zero difference indicates
the presence of an error. This pair of differences indexes
into an entry of a pre-computed (fixed) error correction table,
which contains the index of the residue that is in error and
a correction offset that needs to be added to that residue to
correct said error. In CREEPY, the error checking may be
delayed. In other words, error may be stored in a register and
fixed later.

TABLE II: Error Correction table of RRNS System with
Moduli (3,5,2,7,11,13)

∆m5,∆m6 i′ ε ∆m5,∆m6 i′ ε ∆m5,∆m6 i′ ε
1 , 10 4 6 4 , 11 4 5 7 , 7 4 3
2 , 10 2 3 5 , 8 4 4 7 , 8 1 2
2 , 12 4 6 5 , 9 2 1 8 , 1 2 2
3 , 3 1 1 5 , 12 3 1 8 , 4 4 2
3 , 9 4 5 6 , 1 3 1 8 , 10 1 2
3 , 12 2 3 6 , 4 2 4 9 , 1 4 1
4 , 5 1 1 6 , 5 4 3 9 , 3 2 2
4 , 6 4 4 7 , 2 4 2 10 , 3 4 1
4 , 7 2 1 7 , 6 4 2

For ease of presentation, we present such an error correction
table for a smaller (toy) set of RRNS base moduli in Table II.
The total entries in such a table is at most 2

∑4
i=1(mi − 1).

For the reminder of this section, these set of bases are used
for explanatory purposes.

2) Unsigned Number Overflow Detection: In the absence
of any error or overflow, adding 2 unsigned RRNS numbers
results in (∆m5,∆m6) = (0,0). In the absence of error, we
observe that any overflow manifests itself as a fixed index into
the error correction table, with the entry not corresponding to
any error. Table III provides some examples of this obser-
vation. While computations of the deltas are most efficient
by using a base-extension algorithm, we use the Chinese
Remainder Theorem (CRT) or the Mixed-Radix Conversion
(MRC) method here to first convert the RRNS number to
binary, before computing deltas. This is solely for explanatory
purposes; binary conversion is not actually necessary to detect
overflow.

Iterating through all possible combinations of numbers and
operations, we observe that the value pair of (∆m5, ∆m6) is
fixed. Moreover, (∆m5, ∆m6) = (10,11) is not a legitimate
address of the error correction table (Table II), thus enabling a
distinction between an error and an overflow. This approach,
however, does not apply to multiplication.

3) Signed Number Overflow Detection: Recall from Sec-
tion IV-C that CREEPY uses the Excess-M2 signed represen-
tation. We discuss the two sources of overflow independently:

1) Add two positive numbers. Table IV provides a few
examples illustrating the algorithm. The 1 + 104 in the
first column is represented in decimal. After Excess-
M
2 mapping, the computing equation is transformed to

106 + 209 since M
2 = 105 for the toy set of moduli.

Therefore, the X RRNS value is the the RRNS of
106 and Y RRNS value is the the RRNS of 209. We
observe that the pair (∆m5,∆m6) remains at a fixed
value (10,11).

2) Add two negative numbers. Similarly, examples for
adding two negative numbers are shown in Table V. In
this case, we observe that the pair (∆m5,∆m6) is fixed
to (1,2).

Note that neither (10, 11) nor (1, 2) are legitimate addresses
in Table II, thereby enabling a distinction between an error
and an overflow. However, while this method works for both
addition and subtraction, it does not hold for detection of
multiplication overflow as the delta-pair is not constant and
sometimes indexes into a legal error correction table entry.

Figure 6 shows the overview of the whole algorithm.

If	 |X|mi	 <=mi	 -‐1	 for	 1<=	 i	 <=6

Use	 |X|mi for	 1<=	 i <=4	 to	 compute	 |X|’m5 and	 |X|’m6

Set	 |X|mi	 =	 0

N

Y

Calculate	 |Delta|mc=	 ||X|’mc -‐ |X|mc|mc for	 5<=	 c	 <=6	

Replace	 incorrect|X|mc with	
corresponding	 |X|’mc

Correct	 the	 residue	 value	 via	
Error	 Correction	 Table(ECT)

Exit

Both |Delta|mc= 0
One |Delta|mc != 0 Both |Delta|mc != 0&

valid addr of ECT

Exit

|Delta|m5 = 10&
|Delta|m6= 11

|Delta|m5 = 1&
|Delta|m6= 2

Exit

Exit Exit
No Error One Error in a

Redundant
Residue

One Error in a
Non-Redundant

Residue

Overflow Underflow

Fig. 6: Single error detection and correction algorithm with
overflow/underflow detection

We observe that the described algorithm works in a
similar manner even with our original set of bases,
(199,233,194,239,251,509). An overflow results in a delta-pair
of (77, 289), whereas an underflow results in (174, 220). Both
these pairs do not index into legitimate entries of the error
correction table for these set of bases (cf. Appendix E, Watson
[12]).

V. SIMULATION

To measure the performance vs reliability trade-off of
CREEPY, we augment a stochastic fault injection mechanism
into a cycle-accurate, in-order, trace-based timing simulator.
We abstract the notion of using marginal devices and/or near
threshold voltage into Esignal and Pe. Esignal, provided as an
input to the simulation, is a measure of the signal energy at
the input of a gate; Pe is the probability of a fault occurring
at the output of a gate in any given cycle. The relationship
of Esignal and Pe can be defined by the following relation:
Pe = exp(

−Esignal

kT).
We first introduce a series of error events and their proba-

bilities.

90

TABLE III: Unsigned Number Overflow Examples in RRNS with Moduli (3,5,2,7,11,13)

X+Y X RRNS Y RRNS X+Y RRNS CRT/MRC |X′|m5,|X′|m6 ∆m5, ∆m6

2+209 (2,2,0,2,2,2) (2,4,1,6,0,1) (1,1,1,1,2,3) (1, 1, 1, 1)⇔ 1 |1|11=1,|1|13=1 10 11
3+209 (0,3,1,3,3,3) (2,4,1,6,0,1) (2,2,0,2,3,4) (2, 2, 0, 2)⇔ 2 |2|11=2,|2|13=2 10 11

... 10 11
209+209 (2,4,1,6,0,1) (2,4,1,6,0,1) (1,3,0,5,0,2) (1, 3, 0, 5)⇔ 208 |208|11=10,|208|13=0 10 11

TABLE IV: Excess-M2 Overflow Examples for addition of two positive numbers in RRNS with Moduli (3,5,2,7,11,13)

X+Y X RRNS Y RRNS X+Y RRNS Add Correction Factors CRT/MRC |X′|m5,|X′|m6 ∆m5,∆m6

1+104 (1,1,0,1,7,2) (2,4,1,6,0,1) (0,0,1,0,7,3) (0,0,0,0,1,2) (0, 0, 0, 0)⇔ 0 |0|11=0,|0|13=0 10 11
2+104 (2,2,1,2,8,3) (2,4,1,6,0,1) (1,1,0,1,8,4) (1,1,1,1,2,3) (1, 1, 1, 1)⇔ 1 |1|11=1,|1|13=1 10 11

... 10 11

TABLE V: Excess-M2 Overflow Examples for addition of two negative numbers in RRNS with Moduli (3,5,2,7,11,13)

X+Y X RRNS Y RRNS X+Y RRNS Add Correction Factors CRT/MRC |X′|m5,|X′|m6 ∆m5,∆m6

-1-105 (2,4,0,6,5,0) (0,0,0,0,0,0) (2,4,0,6,5,0) (2,4,1,6,10,12) (2, 4, 1, 6)⇔ 209 |209|11=0,|209|13=1 1 2
-3-104 (0,2,0,4,3,11) (1,1,1,1,1,1) (1,3,1,5,4,12) (1,3,0,5,9,11) (1, 3, 0, 5)⇔ 208 |208|11=10,|208|13=0 1 2

... 1 2

Pe: Probability of a fault occurring at the output of a
gate in any given cycle, as already defined.

Padd: Probability of at least a single error in an adder
(each sub-core has an adder). If there are Nadd gates in an
adder, the probability of each of these gates being free of error
is (1 − Pe)

Nadd . Therefore, Padd=1-(1 − Pe)
Nadd . Similarly,

Pmul is calculated. For multi-cycle operations, this definition
holds as long as the output state of each gate is used exactly
once for the operation, which is true for all of our operators.

PRi
: Probability of at least 1 fault being present in

a slice (sub-core) of register Ri between cycles t1 and t2,
where, t2 is the time at which the RRNS consistency of
Ri is being checked and t1 is the time at which the RRNS
consistency of Ri was last established. As t1 depends upon
fn (the check frequency, which we discuss later) and the
dynamic instruction trace, we explicitly maintain a mapping
of LastCheckedCycle[Ri] in our simulator. Assuming an
SRAM implementation of 8-bit wide Ri, the number of
transistors is 8×6 = 48. The probability of Ri being error free
for the entire duration of (t1, t2) is (1 − P ′)48(t2−t1), where
P ′ is the probability of an error occurring in the state of an
SRAM transistor. Due to the nature of an SRAM device, any
fault occurring in one of its transistors gets latched, resulting in
a higher probability of an error (when compared with glitches
in logic transistors getting masked if the glitch does not occur
close to the clock edge). As such, we assume P ′ = 100P e.
Therefore, PRi

= 1− (1− 100Pe)
48(t2−t1).

PloadX : Probability of at least 1 fault being present in the
loaded value of address X . This is clearly analogous to PRi

,
except that we maintain a mapping of LastStoredCycle[X]
to determine the last time a consistent state at address X was
ensured. However, PloadX also encapsulates the probability of
an error in the implicit computation of the address X itself
(from its base and offset) during the execution of the load.

PSC: Probability of at least 1 fault occurring in a
sub-core from the last time it was checked. To illus-
trate, say an RRNS check was placed after the instruction

ADD R3, R2, R1. Then, PSC = 1− (1−Padd)(1−PR2
)(1−

PR1
).

PC: Probability of exactly 1 error occurring in a
CREEPY core. This translates to exactly 1 sub-core being
in error (where the sub-core error itself may be of multi-
bit form; RRNS can tolerate multi-bit flips within a single
residue). Therefore, PC = C1

6 × PSC(1 − PSC)5, where the
combinatorial choose operator Cr

n enumerates the number of
ways in which r items can be chosen from n distinct items.

P 0
C: Probability of no error in a CREEPY core from the

last time it was checked. P 0
C = 6C0 × (1− PSC)6.

P fail
C : Probability of a CREEPY core failing. The current

version of the CREEPY micro-architecture is unable to correct
more than 1 error occurring in the core and defers recovery to a
software checkpoint. As such, we deem ≥ 2 errors in the core
as amounting to a failure. Therefore, P fail

C =
∑

2≤r≤6 C
r
6 ×

P r
SC(1− PSC)6−r = 1− P 0

C − PC .
We statically compile integer benchmarks from the SPEC

2006 suite to generate a dynamic instruction trace compatible
with the CREEPY ISA. The estimated gate count number for
each of the five 8-bit subcores (not including the D Cache)
is 2036, and, 2353 for the 9-bit one. Upon feeding this trace
to the simulator, after every nth instruction, as governed by
fn, the check frequency, an RRNS check is simulated. Based
on PC and P 0

C , it is stochasticaly determined if an RRNS
correction must also be simulated. In accordance with the
algorithms described in Section IV-D), we designate 8 cycles
for the RRNS check and an additional 1 cycle should an error
be corrected. At the end of each RRNS check, P fail

C,i is used
to determine if a failure is likely to occur at that cycle ti.
As such, we use a typically used reliability metric, Mean
Time To Failure (MTTF), which can be defined as follows:
MTTF = Total Cycles

CPU Frequency × ∑
i P

fail
C,i

.

In addition to varying Esignal, we explore following opti-
mizations that are expected to improve reliability and perfor-
mance:

91

a) : Vary check frequency fn, where fn denotes that
every nth instruction is checked for an RRNS error. Intuitively,
checking very frequently (ex. f1; checking every instruction)
favors higher reliability, whereas checking very infrequently
(ex. f∞, or equivalently, f0) favors higher performance.

b) : For n > 1, perform a pipeline check on up to n
destination registers / memory locations. This check strategy,
known as pipen is similar to fn in that the consistency check
action only happens after the nth instruction, but with the
added action that checks all the output destinations for the
past n instructions in a pipeline fashion. Assuming that the
original check takes 8 cycles, the check of pipen should be
8+(n-1) cycles.

c) : For n > 1, in addition to performing a check (either
fn or pipen) every nth instruction, also perform a check at
every store instruction to enhance memory (cache) reliability.
For brevity, we turn on this optimization for all the results
presented in this section.

A. Performance vs Consistency Check Frequencies

0

0.2

0.4

0.6

0.8

1

1.2

gobmk perlbench hmmer mcf gcc bzip2

No
rm

ali
ze
d:P

er
fo
rm

an
ce

f0

f1

f5

f10

f20

f50

f100

pipe_5

pipe_10

pipe_20

pipe_50

pipe_100

!
Fig. 7: Performances VS Consistency Check Frequencies

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

gobmk perlbench hmmer mcf gcc bzip2

No
rm

ali
ze
d::
M
TT
F

f0

f1

f5

f10

f20

f50

f100

pipe_5

pipe_10

pipe_20

pipe_50

pipe_100

!

Fig. 8: MTTFs VS Consistency Check Frequencies

Figure 7 shows the relationship between system perfor-
mance and consistency check frequency. We vary the check
frequency from 0 to 100 in both non-pipeline and pipeline
approaches. f0 means that no extra consistency checks are
performed whatsoever, and f100 performs an extra consistency
check after every 100th instruction. Also recall that pipe5
indicates that the results of each instruction are checked at
the end of every 5th instruction. The Y-axis is normalized
against the baseline, which is f0. The results show that the data
trends of all the benchmarks are very similar. f0 always gets
the best performance because it incurs no consistency check
overhead. Frequently checking for errors hurts performance,
as evidenced by f1 suffering from the worst performance
degradation. Pipelined checks are very close to non-pipelined
checks in performance on average. In other words, using the
pipelined check approach enables a potentially more reliable
system without sacrificing performance when compared to the
non-pipelined check approach.

B. MTTF vs Consistency Check Frequencies
As explained earlier, Mean Time To Failure (MTTF) pro-

vides a measure of reliability. Similar to Section V-A, we
normalize the MTTF against the baseline, f0. Intuitively, a
higher check frequency would result in a higher MTTF as
the probability of an uncorrected error diminishes. However,
it can be seen from Figure 8 that f1 does not always provide
the highest MTTF. This can be attributed to the fact that the
consistency checks themselves are not instantaneous and this
added delay leaves gates more vulnerable to faults.

For example, consider the f1 and f10 scenarios below. All
add instructions take 1 cycle and check instructions take 8
cycles. In instruction 0, R5 will be checked in both cases.
Then after this step, R5 is first used in instruction 11. From
the evaluation model we defined, the fault probability of R5

depends on the time intervals between instruction 0 and 11
(time interval from last check). The time interval for the f1
scenario in this example is (1 + 8)× 10 = 90 cycles, but for
f10, this is only 1× 10 + 8 = 18 cycles. Therefore, the fault
probability of R5 in instruction 11, is higher for the f1 scenario
than for f10. Therefore, a low frequency pipeline checking
(such as pipe5 or pipe10) achieves a good balance between
performance and reliability.

f1 : f10:
(0) add R5, R2, R3 (0) add R5, R2, R3
check R5 check R5
(1) add R1, R2, R3 (1) add R1, R2, R3
check R1 (2) add R3, R2, R1

(2) add R3, R2, R1
check R3 (10) add R8, R2, R1
......//no check R5 check R8
(10) add R8, R2, R1 (11) add R11, R3, R5
check R8
(11) add R11, R3, R5

C. MTTF vs Energy Input Per Gate

!

1.00E%08

1.00E%04

1.00E+00

1.00E+04

1.00E+08

1.00E+12

1.00E+16

1.00E+20

1.00E+24

1.00E+28

10 15 20 25 30 35 40 41 42 43 44 45

M
TT

F(
Se
co
nd

)

Energy;per;gate(KT)

gobmk

perlbench

hmmer

mcf

gcc

bzip2

Fig. 10: MTTFs VS Energy input per gate

Figure 10 plots the simulated MTTF for various values of
Esignal. For brevity, only the f1 paradigm is depicted here.
We notice that a value of Esignal greater than 44kT results
in infinite MTTF, which is essentially a very large number,
given the precision limits of the simulation. However, we also
observe that the MTTFs drop very fast when the Esignal is
between 42kT and 43kT.

The key take away from Figures 7, 8 and 10 is that a lower
Esignal can still lead to acceptable latency without degradation
in output quality.

D. Excess-M2 vs Complement M signed representation
There is scope for further tuning the CREEPY core by em-

ploying alternate representations and algorithms. For instance,

92

!!

450000000
500000000
550000000
600000000
650000000
700000000
750000000

Cy
cle

s,

"Gobmk",Cycles

Excess5M/2 Complement,M

(a) Gobmk Performance
!

450000000

500000000

550000000

600000000

650000000

700000000

750000000

Cy
cle

s,

"Perlbench",Cycles

Excess5M/2 Complement,M

(b) Perlbench Performance
! !

450000000
2.045E+10
4.045E+10
6.045E+10
8.045E+10
1.005E+11
1.205E+11

Cy
cle

s1

"Hmmer"1Cycles

Excess7M/2 Complement1M

(c) Hmmer Performance

!!

10000
15000
20000
25000
30000
35000
40000
45000

M
TT

F(
se
co
nd

)

"Gobmk"7MTTF

Excess:M/2 Complement7M

(d) Gobmk MTTF
!

45000
47000
49000
51000
53000
55000
57000
59000

M
TT

F(
se
co
nd

)

"Perlbench"9MTTF

Excess<M/2 Complement9M

(e) Perlbench MTTF
! !

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9

M
TT

F(
se
co
nd

)

"Hmmer"7MTTF

Excess:M/2 Complement7M

(f) Hmmer MTTF

Fig. 9: Performance and MTTF Comparisons for signed number representation methods: ”Excess-M2 ” and ”Complement M”

there may be a set of bases that are conducive to very fast
consistency checks. In this section, we compare two of the
signed representations that were discussed in Section IV-C.
The performance and reliability comparisons are shown in
Figure 9. Recall that consistent arithmetic operations using the
Complement M method require the need to determine the sign
of operands, which is a time-consuming operation in RRNS.
Therefore, the performance of Excess-M2 is much better than
Complement M on average. Even for MTTF, Excess-M2 is
better than Complement M. The reason is similar to that
described in Section V-B (larger time intervals between con-
sistency checks imply higher probability for system failure).

VI. RELATED WORK AND CONCLUSION

While the concepts of RNS, RRNS, error correction, device
limits and signal integrity by themselves are not new, we
believe this is the first proposal that relates these mathematical
and physical entities to push back the horizon of Moore’s law
for high-throughput exascale HPC systems. It must be noted
that our approach does not require the algorithm to be designed
in a fault tolerant manner, thereby expanding the scope of
CREEPY to Turing completeness.

Prior work in the Digital Signal Processors (DSP) domain
([4], [5], [11]) has focused on RNS datapaths to take advantage
of fine-grained data parallelism and energy efficient properties
that RNS operations provide. By utilizing RRNS, CREEPY
benefits from these, but improves upon generality and energy-
efficiency. Chiang et al. [3] provide RNS algorithms for
comparison and overflow detection, but assume all bases to
be odd and do not consider error correction.

CREEPY, being an RRNS computer, draws its underlying
mathematics heavily from the pioneering work of Watson
and Hastings [8], [12], [13]. However, at the time, they
probably did not deem it necessary to provide a detailed micro-
architecture and ISA to support their algorithms. CREEPY

extends and improvizes on their RRNS algorithms in addition
to providing a detailed design. This paper describes and
demonstrates the usability of a CREEPY computer that im-
proves energy efficiency by adding computationally redundant
hardware.

REFERENCES

[1] D. E. Nikonov and I. A. Young, ”Overview of Beyond-CMOS Devices
and a Uniform Methodology for Their Benchmarking,” in Proceedings of
the IEEE, vol. 101, no. 12, pp. 2498-2533, Dec. 2013.

[2] McMenamin Adrian, The end of Dennard scaling, 2013.
[3] J.-S. Chiang and M. Lu, Floating-point numbers in residue number

systems, Computers and Mathematics with Applications,22, no. 10, 127-
140, 1991.

[4] Rooju Chokshi , Krzysztof S. Berezowski , Aviral Shrivastava , Stanislaw
J. Piestrak, Exploiting residue number system for power-efficient digital
signal processing in embedded processors, Proceedings of the 2009
international conference on Compilers, architecture, and synthesis for
embedded systems, October 11-16, 2009, Grenoble, France

[5] E. Di Claudio, F. Piazza and G. Orlandi, Fast Combinatorial RNS
Processors for DSP Applications, IEEE Trans. Computers, vol. 44, no.
5, pp. 624-633, May 1995.

[6] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A.
R. LeBlanc, Design of ion-implanted mosfets with very small physical
dimensions, IEEE Journal of Solid-State Circuits, 9, October 1974.

[7] H. L. Garner, The Residue Number System, IRE Transactions on Elec-
tronic Computers, pp. 140-147, June 1959.

[8] C. W. Hastings, Automatic detection and correction of errors in digital
computers using residue arithmetic, in Proc. 1966 IEEE Region Six Annu.
Conf, pp. 429-464.

[9] Lyons, Robert E., and Wouter Vanderkulk. ”The use of triple-modular
redundancy to improve computer reliability.” IBM Journal of Research
and Development 6.2 (1962): 200-209.

[10] MacWilliams F J, Sloane N J A, The theory of error correcting
codes[M], Elsevier, 1977.

[11] J. Ramirez, RNS-enabled digital signal processor design, Electron. Lett.,
vol. 38, no. 6, pp. 266-268, 2002

[12] R. W. Watson, Error detection and correction and other residue inter-
acting operations in a residue redundant number system, Univ. California,
Berkeley, 1965.

[13] R. W. Watson and C. W. Hastings, Self-checked computation using
residue arithmetic, Proc. IEEE, vol. 54, pp. 1920-1931, Dec. 1966.

93

RRNS Overflow Detection and RRNS Comparison

 In this document, we introduce an add/sub overflow detection algorithm during the
consistency checking. This overflow detection method is suitable for both unsigned
numbers (Section 2.1) and Excess –M/2 signed numbers (Section 2.2.3). Moreover, it
doesn’t need extra hardware overhead. Based on this overflow detection method, we also
found a new residue numbers comparison algorithm (Section 3).

 Watson briefly introduced a similar overflow detection method via consistency
checking in page 109 of his thesis. But I don’t think his method is correct. The detail
discussions about these are in Section 2.2.1 and 2.2.2.

1. Single Error Detection and Correction Algorithm

In this section we simply introduce the SEC algorithm from section 2 of Watson’s
thesis, because the following overflow detection method may need some
background information from it.

Input: The sequence of residues (|X|m1, |X|m2, … , |X|mn+r)
Output: A consistent sequence of residues (|X|m1, |X|m2, … , |X|mn+r)

Procedure
Step1: Check to see that the condition (|X|mi ≤ mi -1) is satisfied, 1≤ i ≤ n+r.

(a) If it is, then proceed to Step 2.
(b) If it is not, then set the residue which does not meet this condition to

zero and proceed to Step 2.
Step2: Use a base-extension algorithm to compute a new set of R residues from
the information contained in the N-R residues.

Step3: Perform the calculations |Δ|mc = ||X|’mc - |X|mc| mc in a modulo mc adder,
where c = (n+1, …, n+r).

(a) If |Δ|mc = 0 for all values of c, then there is no error. Exit.
(b) If one and only one member of the sequence (|Δ|mc) is non-zero, then

the R residue corresponding to the non-zero value of |Δ|mc is incorrect.
Replace this incorrect residue with the value of the corresponding
residue |X|’mc computed by base extension. Exit.

(c) If at least two members of the sequence (|Δ|mc) have a non-zero value,
then the incorrect residue is in the N-R group of the residues. Proceed
to Step 4.

 Step4: Use the r-tuple (|Δ|mc) as an address to an error correction table.
(a) The output from the table will be the number of modulus of the N-R

residue in error, i’, and a value ε to be added to the incorrect residue
in a modular adder to correct it. Proceed to Step 5.

(b) The output from the table will indicate that no such address is possible
within the assumptions of this algorithm. Proceed to Step 6.

Step5: Add the value ε obtained from the error correction table to the incorrect
residue in a modulo mi, adder, thus correcting it, where mi, is the modulus of the
incorrect N-R residue. Exit.

94

Step6: Indicate that a more serious malfunction has occurred than is correctable
with this algorithm. Exit.

End Procedure

 In Step1, it checks the condition (|X|mi ≤ mi -1),where 1≤ i ≤ n+r. In Creepy, the
residues are encoded in binary. The moduli will not in general be powers of 2, and
therefore it is possible that an error could occur in such a way as to make the integer
represented by the binary code word greater than or equal to the modulus. If this condition
occurs, it definitely indicates an error and can easily be detected with combinational logic.
Because the SEC and DED algorithms are separated and we can only choose one of
them. If choose DED, Step1 may early detect and handle errors. In SEC, this also
definitely indicates an error. But no information is available at this point to tell what the
magnitude of the correct residue should be. To obtain this extra necessary information,
the rest of the algorithm must be followed. A value of a binary coded residue greater than
or equal to the modulus does not make mathematical sense, so this SEC algorithm
change them to zero once these errors are found.

 In Step4, use the r-tuple (|Δ|mc) as an address to an error correction table. You
can find the error correction table in Appendix E of Watson’s thesis. It bases on moduli
(199,233,194,239,251,509). Using value pair (|Δ|m5 , |Δ|m6) as an address. There are MR =
m5* m6 = 251*509 = 127,759 possible combinations of the |Δ|mc. But Watson had proofed
that the total number of correct table entries is only 2 (mi − 1'

()*). So the total entries
of error correction table is (198+232+193+238)*2 = 1722. Thus only 1.4% of the possible
pairs (|Δ|m5 , |Δ|m6) are legitimate address to the error correction table. For simplify the
overflow discussion in following section, I also generate the correct table for
(3,5,2,7,11,13). Total entries of error correction table for system (3,5,2,7,11,13) is
(2+4+1+6)*2 = 26. The examples in this document are based on moduli (3,5,2,7,11,13)
unless otherwise specified.

TABLE1 ERROR CORRECT TABLE OF RRNS SYSTEM WITH MODULI (3,5,2,7,11,13)
|Δ|m5 |Δ|m6 i’ ε |Δ|m5 |Δ|m6 i’ ε |Δ|m5 |Δ|m6 i’ ε

1 10
2 10

 2 12
 3 3
 3 9
 3 12
 4 5
 4 6
 4 7

4 6
2 3
4 6
1 1
4 5
2 3
1 1
4 4

 2 1

 4 11
 5 8
 5 9
 5 12
 6 1
 6 4
 6 5
 7 2
 7 6

4 5
4 4
2 1
3 1
3 1
2 4
4 3
4 2
2 4

 7 7
 7 8
 8 1
 8 4
 8 10
 9 1
 9 3
 10 3

4 3
1 2
2 2
4 2
1 2
4 1
2 2
4 1

2. RRNS Overflow Detection by Consistency Checking

2.1 Unsigned Number Overflow Problem

 The general way to detect overflow in RNS is via comparing the result of addition
with one of the addends. If X ≥ 0 and Y < M then (X+Y) mod M causes overflow if and
only if the result is less than X. Thus, we can conclude, that general overflow detection

95

method is equivalent to the magnitude comparison.

 One of the most efficient ways to detect overflow in RNS is via parity checking. It
indicates whether an integer is even or odd. Suppose two integers (X, Y) have the same
parity: Z = X + Y. An overflow occurs if Z is odd. Contrary, if (X, Y) have different parity,
then an overflow occurs if Z is even. The parity checking technique is one of the best and
fastest suggested methods to detect the overflow in RNS. However, this technique can
only be used with moduli sets that have just odd members, i.e. odd dynamic range, which
is not suitable for many moduli sets that uses even as one of its moduli. Thus, it is obvious
that overflow detection in RNS that has an even dynamic range is a very important issue.

 If we add 2 unsigned RRNS number, no error and no overflow, both |Δ|m5 and |Δ|m6

will be zero. But what would happen if overflow occurs but no error found?

E.g. in the system with moduli (3,5,2,7,11,13):

1) 2+209 = (2,2,0,2,2,2) + (2,4,1,6,0,1) = (1,1,1,1,2,3)

Now we use base-extension algorithm or Chinese Reminder Theory to compute |X|’m5

and |X|,m6 base on the first 4 N-R moduli.

(1,1,1,1) <=> 1; |X|’m5 = |1|11 = 1; |X|’m6 = |1|13 = 1;

(|X|m5 , |X|m6) = (2, 3) ≠ (|X|’m5 , |X|’m6)

(|Δ|m5 , |Δ|m6) = (10,11)

From above example, it seems that consistent checking may detect overflow because
(|X|m5 , |X|m6) ≠ (|X|’m5 , |X|’m6). But if we use this method to detect overflow, how to
distinguish error and overflow? See more examples:

2) 3+209 = (0,3,1,3,3,3) + (2,4,1,6,0,1) = (2,2,0,2,3,4)

(2,2,0,2) <=> 2 ; |X|’m5 = |2|11 = 2; |X|’m6 = |2|13 = 2;

(|X|m5 , |X|m6) = (3, 4) ≠ (|X|’m5 , |X|’m6)

(|Δ|m5 , |Δ|m6) = (10,11)

3)209+209 = (2,4,1,6,0,1) + (2,4,1,6,0,1) = (1,3,0,5,0,2)

(1,3,0,5) <=> 208 ; |X|’m5 = |208|11 = 10; |X|’m6 = |208|13 = 0;

(|X|m5 , |X|m6) = (0, 2) ≠ (|X|’m5 , |X|’m6)

(|Δ|m5 , |Δ|m6) = (10,11)

 I have tried all the possible combinations and find that (|Δ|m5 , |Δ|m6) is a fixed value
pair via a C program. (|Δ|m5 , |Δ|m6) = (10,11) is not a legitimate address of the error
correction table(Table1), so we can distinguish error and overflow.

96

2.2 Signed Number Overflow Problem

2.2.1 Possible Error in page 102 of Watson’s thesis (About correction factor values):

 We can easily find that complement signed number representation method is used
here because W1 ↔ M – w1 and W2 ↔ M – w2 . w1 and w2 are positive numbers. But in
equation 4.1.4, I think the correct final result should be ||M|ma +|M –w1-w2|ma |ma, not ||2M|ma
+|–w1-w2|ma |ma. In other words, the correction factor for R-residues should be ||-M|mc , not
||-2M|mc.
E.g. (-3) = (-1)+(-2)
-3 ↔ 210 -3 = 207 ↔ (0,2,1,4,9,12)
-1 ↔ 210 -1 = 209 ↔ (2,4,1,6,0,1)
-2 ↔ 210 -2 = 208 ↔ (1,3,0,5,10,0)
(-1)+(-2) = (2,4,1,6,0,1)+ (1,3,0,5,10,0) = (3,7,1,11,10,1) = (0,2,1,4,10,1)
|-M|11 = |-210|11 = 10 |-M|13 = |-210|13 = 11
 |-2M|11 = |-420|11 = 9 |-M|13 = |-420|13 = 9
if correction factor is ||-2M|mc, result = (0,2,1,4,10,1) + (0,0,0,0,9,9) = (0,2,1,4,8,10) ≠
(0,2,1,4,9,12)
if correction factor is ||-M|mc, result = (0,2,1,4,10,1) + (0,0,0,0,10,11) = (0,2,1,4,9,12), Correct!

2.2.2 Complement (M/2 = -105) overflow detection

 Watson briefly introduced a complement signed number overflow detection method
via consistency checking in page 109 of his thesis. The method could be summarized
like this:

1) If addition of two positive operands or subtraction of a negative minuend from a
positive subtrahend, the result will be in negative region if overflow occurs. So
we can detect overflow by checking the signs.

97

2) If addition of two negative operands or the subtraction of a positive minuend from
a negative subtrahend, the result will be in error region if overflow occurs. So we
can use consistency checking to detect overflow.

 I don’t think (2) is correct. Let’s see an example for (2). Assuming that we add two
negative numbers: (-105)+(-2) = -107.
										 -105(105) = (0,0,1,0,6,1)
 -2(208) = (1,3,0,5,10,0)
 -107 = (-105)+(-2) = (1,3,1,5,5,1) => add correct factor
if correction factor is ||-M|mc, result = (1,3,1,5,5,1) + (0,0,0,0,10,11) = (1,3,1,5,4,12)
 (1,3,1,5) <=> 103 ; |X|’m5 = |103|11 = 4; |X|’m6 = |103|13 = 12;
 (|Δ|m5 , |Δ|m6) = (0,0), unable to detect overflow

if correction factor is ||-2M|mc, result = (1,3,1,5,5,1) + (0,0,0,0,9,9) = (1,3,1,5,3,10)
 (1,3,1,5) <=> 103 ; |X|’m5 = |103|11 = 4; |X|’m6 = |103|13 = 12;
 (|Δ|m5 , |Δ|m6) = (1,2), detect overflow

 But we have proofed in Section 2.2.1 that ||-2M|mc isn’t the correct value. I think
Watson used the wrong correction factor ||-2M|mc to get his overflow detection conclusion
(2). If the correction factor is ||-M|mc, we are unable to use consistency checking to detect
overflow for complement.

In complement representation, we still may use the expensive signs checking method to
detect the overflow. Assume that we add two positive numbers: 104 + 2= 106. The
overflow should happen because the range of sign number is [-105, 104]. 106 is mapped
to -104 in complement method. In consistency checking, (|Δ|m5 , |Δ|m6) will be (0,0) and
unable to detect overflow. The 106 locates in negative region, so checking the signs can
find the overflow. Similarly, we add two negative numbers: -105 + -2= -107. The N-R will
represent a number in positive region, (-107↔103). So the sign checking method can be
used for complement representation.

Sign determination in RNS is a time-consuming operation. For signs checking overflow
detection, we not only need to know the signs of operands before calculation, but also
need figure out the sign of result after consistency checking. So this method isn’t a good
choice.

2.2.3 Excess –M/2 (M/2 =0) overflow detection
 a) Add two positive numbers:
 1) 1+104 = 105, overflow should be detected.
 1(106) = (1,1,0,1,7,2)
 104(209) = (2,4,1,6,0,1)
 105 = 1+104 = (0,0,1,0,7,3) =>Add Correct factor: (0,0,0,0,1,2)
 (0,0,0,0) <=> 0 |0|11 = 0 |0|13 = 0 Consistency checking fail
 (|Δ|m5 , |Δ|m6) = (10,11)

 2) 2+104 = 106, overflow should be detected.

 				2(107) = (2,2,1,2,8,3)
 104(209) = (2,4,1,6,0,1)
 106 = 2+104 = (1,1,0,1,8,4) => Add Correct factor: (1,1,1,1,2,3)
 (1,1,1,1) <=> 1 |1|11 = 1 |1|13 = 0 Consistency checking fail

98

 (|Δ|m5 , |Δ|m6) = (10,11)

 Similarly, try all the possible combinations of positive number, the pair (|Δ|m5 , |Δ|m6

) get a fixed value (10,11).

 b) Add two negative numbers:
 1) (-1)+(-105) = -106 , overflow should be detected.
 -1(104) = (2,4,0,6,5,0)
 -105(0) = (0,0,0,0,0,0)
 -106 = (-1)+(-105) = (2,4,0,6,5,0) => Add Correct factor: (2,4,1,6,10,12)
 (2,4,1,6) <=> 209 |209|11 = 0 |209|13 = 1 Consistency checking fail
 (|Δ|m5 , |Δ|m6) = (1,2)
 2) (-3)+(-104) = -107 , overflow should be detected.
 -3(102) = (0,2,0,4,3,11)
 -104(1) = (1,1,1,1,1,1)
 -107 = (-3)+(-104) = (1,3,1,5,4,12) => Add Correct factor: (1,3,0,5,9,11)
 (1,3,0,5) <=> 208 |208|11 = 10 |208|13 = 0 Consistency checking fail
 (|Δ|m5 , |Δ|m6) = (1,2)

 Similarly, try all the possible combinations of negative number, the pair (|Δ|m5 , |Δ|m6

) get a fixed value (1,2).

 Check the error correct table, (|Δ|m5 , |Δ|m6) = (10,11) and (|Δ|m5 , |Δ|m6) = (1,2) are
not legitimate addresses in Table 1. So we are possible to distinguish error, overflow and
underflow in Excess –M/2 signed number representation method.

 We only discussion addition here. Consistency checking is also suitable for
subtraction overflow detection.

2.3 Multiplication Overflow Detection?

 From the experiment results, the consistency checking is unable to detect
multiplication overflow. The (|Δ|m5 , |Δ|m6) pair values always change and are even possible
to overlap with the error correct table entries. So unable to tell the difference between
error and overflow.

99

Figure 1 (|Δ|m5 , |Δ|m6) pair values from multiplication overflow detection tests

 Actually, parity checking also can’t detect the multiplication overflow. Assume we
have a RNS system with all moduli odd. E.g. (3,5,7,11). The odd dynamic range M =
3*5*7*11 = 1155. I list some example in the table below. In line 1000*2 and 1000*3, both
of them are overflow. But their compute parity bits are different. So even we change all
N-R moduli to odd, it won’t help us to easily detect multiplication overflow. I have read
several papers about RNS overflow, but all of them only discuss Add/Sub operations. Any
ideas?

 True
result

True
parity

Overflow Compute
result

Compute
parity

1000*1 1000 even no 1000 even

1000*2 2000 even yes 2000-1155= 845 odd

1000*3 3000 even yes 3000-2310 =
690

even

2.4 Overflow Detection in (199,233,194,239,251,509) system

 The discussions in 2.1 to 2.3 are based on moduli (3,5,2,7,11,13). We also make
similar verification in (199,233,194,239,251,509). But we only choose some sample
points, not all the possible operands combination.
 From the results, this add/sub overflow detection method also works in this large
moduli system for unsigned number and Excess –M/2 signed number. If the operation
results are overflow, (|Δ|m5 , |Δ|m6) value pair are fixed and equal to (77, 289). If the
operation result are underflow, (|Δ|m5 , |Δ|m6) value pair are also fixed and equal to (174,
220). Checking the error correction table in Appendix E of Watson’s thesis, both (77,289)

100

and (174,220) are not legitimate address. So we can distinguish the errors and overflow
for moduli (199,233,194,239,251,509).

3. A New Residue Numbers Comparison Method
 Residue numbers comparison is another main function in RIU. Jen-shiun	 etc. [1]
proposed a number comparison method for residue numbers based on parity bits:

THEOREM 1. Let X and Y have the same parity and Z = X - Y. X > Y, iff Z is an even
number. X < Y, iff Z is an odd number.

THEOREM 2. Let X and Y have different parities and Z = X - Y. X >_Y, iff Z is an odd
number. X < Y, iff Z is an even number.

 But unfortunately, the prerequisites of this parity comparison method are all moduli
are supposed to be odd and pair-wise relatively prime. In our design, one of the non-
redundant moduli is even, so this trick isn’t suitable here. Essentially the parity
comparison algorithm is just a subtraction and then checking the overflow. Because the
subtract results need consistency checking in RIU, we are possible to use the low cost
overflow detection method proposed in Section 2 to generate a new residue number
comparison method.

 New comparison method: X and Y are two RRNS numbers. X - Y and the result
make consistency checking. X>=Y iff (|Δ|m5 , |Δ|m6) is (0,0); X<Y iff (|Δ|m5 , |Δ|m6) is (1,2)
for moduli (3,5,2,7,11,13); X<Y iff (|Δ|m5 , |Δ|m6) is (174,220) for moduli
(199,233,194,239,251,509).

 This new residue number comparison method can be used for both unsigned and
Excess –M/2 signed numbers. It’s easy to understand that this idea is suitable for
unsigned residue numbers. Because if X<Y, the X – Y result will be negative and not in
the range [0,M). So the consistency checking will detect the underflow via the value pair
of (|Δ|m5 , |Δ|m6). For Excess –M/2 signed numbers X and Y, they have related mapped
residue numbers. We call them mapped_X and mapped_Y here. E.g. X =0 => mapped_X
= M/2. We can get the conclusion that X>=Y iff mapped_X>= mapped_Y. So the
compassion is similar to unsigned number. As we discussed before, the Add/Sub/Mul
operations of implicit signed number representation need correction factors. But it should
not add correction factor for this comparing subtraction and just treat them as unsigned
number, otherwise the compare result may be not correct.

Figure 2 (a) Normal Signed Numbers Subtraction (b) Signed Numbers Compare Subtraction

 We have found two other RNS comparison methods from Watson:
1) Make a RRNS subtraction(X-Y). Converting the RRNS result to binary (parallel with
consistency checking). If binary result>0, then X>Y. But except the comparison, it seems
that we don't need the RRNS to binary converting logic anymore.
2) Relative magnitude comparison algorithm. By now we are not sure whether it's suitable

101

or could be extended for implicit signed number representation method. Moreover, this
need more extra hardware overhead.

 This new comparison method may give us some chances to make RIU simple.

4. Comparison about signed number representation methods

Methods Need Sign

determination for
correct factor?

Can detect
overflow during
consistent
checking?

Can use the new
residue numbers
comparison
method?

Complement yes no no
Excess –M/2 no yes yes

Based on these results, we prefer to use Excess –M/2 method to represent signed
numbers.

Reference:
[1] J.-S. Chiang and M. Lu, "Floating-point numbers in residue number systems, " Computers and
Mathematics with Applications, vol. 22, no. 10, pp. 127-140, 1991.

102

... 1

Representing real numbers in a
Redundant Residual Number System (RRNS)

based computer
Sriseshan Srikanth, Bobin Deng, Eric R. Hein, Thomas M. Conte, Erik Debenedictis and Jeanine Cook

Abstract—With the end of Dennard Scaling, computer architects have been looking for novel approaches to improve efficiency. One
promising direction involves being able to correct intermittent errors efficiently at runtime due to lowered signal integrity and/or marginal
post-CMOS devices. Recent work has proposed such an error correcting computer using the RRNS framework, however, it is limited to
integer data. In this paper, the authors propose a mechanism to represent real numbers using the RRNS framework, thereby allowing
reliable operation while maintaining reasonable range, precision and performance when compared to those of unreliable binary real
numbers.

Index Terms—

F

1 INTRODUCTION

COMPUTERS based on the Residual Number System (RNS)
have been proposed in the past, especially in the domain

of high performance, low energy digital signal processors [5],
[6], [10] for the inherent parallelism and low bit width ops
that RNS provides. Decades after a redundant component
was augmented [11] into RNS, known as Redundant Residual
Number System (RRNS), recent work [3] has emerged to de-
sign a general purpose compute core complete with ISA and
microarchitecture. The underlying principle of such an RRNS
computer is that of being able to tolerate intermittent errors not
only in storage, but also in compute.

The utility of RRNS error correcting computers stems from
the fact that transistor scaling - that allowed smaller transistors
to operate at the same power density - has ended [2]. In the
absence of such conventional scaling, lowering supply voltage
Vdd below conservative limits and/or using post-CMOS devices
[1] are seen as approaches towards continued increase in per-
formance per Watt. However, such techniques tend to introduce
intermittent errors.

RRNS provides a representation that offers error correction
(especially for compute) at a lower area and energy overhead
than when using the conventional combination of binary repre-
sentation and Triple Modular Redundancy (TMR) [9]. However,
prior work falls short of providing a solution that protects non-
integer numbers in RRNS.

This paper proposes an extension to the RRNS represen-
tation to allow for reliable storage and arithmetic on real
numbers.

2 BACKGROUND

2.1 Residual Number System (RNS)

The Residual Number System [7] has been used as an al-
ternative to the binary number system chiefly to speed up
computation. This increased efficiency comes from the fact
that a large integer can be represented using a set of smaller
integers, with arithmetic operations permissible on the set in

S. Srikanth, B.Deng, E. Hein and T. Conte are with Georgia Institute of
Technology, Atlanta, GA, 30332 USA e-mail: seshan@gatech.edu
E. Debenedictis and J. Cook are with Sandia National Laboratories...
Manuscript received ...; revised

parallel. We present some of the properties of an RNS system
without proof.

Let B = {bi ∈ N for i = 1, 2, 3, ..., n} be a set of n co-prime
natural numbers, which we shall refer to as bases or moduli.
M =

∏n
i=1 bi defines the range of natural numbers that can be

injectively represented by an RNS system that is defined by the
set of bases B. Specifically, for x such that x ∈ N, x < M , then,
x ≡ (|x|b1 , |x|b2 , |x|b3 , ..., |x|bn), where |x|m = xmod m. Each
term in this n-tuple is referred to as a residue.

We also note that addition, subtraction and multiplication
are closed under RNS. This is because of the following ob-
servation: given x, y ∈ N, x, y < M , we have |x op y|m =
||x|m op |y|m|m, where op is any add/subtract/multiply opera-
tion.

2.2 Redundant Residual Number System (RRNS)

To augment RNS with reliability, r redundant bases are intro-
duced. The set of moduli now contains n non-redundant and
r redundant moduli: B = {bi ∈ N for i = 1, 2, 3, ..., n, n +
1, ..., n + r}. The reason these extra bases are redundant is be-
cause any natural number smaller than M (=

∏n
i=1 bi) can still

be represented uniquely by its n non-redundant residues. Intu-
itively, the r redundant residues form a sort of an error code be-
cause of the fact that all residues are transformed in an identical
manner under arithmetic operations. For x such that x ∈ N, x <
M , then, x ≡ (|x|b1 , |x|b2 , |x|b3 , ..., |x|bn , |x|bn+1 , ..., |x|br) con-
tains n non-redundant residues as well as r redundant residues.

Upon applying arithmetic transformations to an RRNS
number, any error that occurs in one of the residues is contained
within that residue and does not propagate to other residues.
When required, such an error can be corrected with the help of
the remaining residues. Specifically, an RRNS system with (n, r)
= (4, 2), a single errant residue can be corrected, or, two errant
residues can be detected. Table 1 provides a simple example
that illustrates such error correction. Research by Watson and
Hastings [8], [11], [12] lays the foundation for the underlying
theoretical framework that is used and extended in our work.
We use (199, 233, 194, 239, 251, 509) as our (4, 2)-RRNS system,
providing a range M = 199× 233× 194× 239 ∈ (231, 232).

It can be seen that not only does a residue number system
achieve a higher efficiency due to enhanced bit-level parallelism

103

... 2

Table 1: A (4, 2)-RRNS example with the simplified base set (3, 5, 2, 7, 11, 13).
Range is 210, with 11 and 13 being the redundant bases.

Decimal mod 3 mod 5 mod 2 mod 7 mod 11 mod 13
13 1 3 1 6 2 0
14 2 4 0 0 3 1

13+14=27 (1+2)mod 3=0 2 1 6 5 1
All columns function independently of one another.

An error in any one of these columns (residues) can be
corrected by the remaining columns.

(also, no carries required for addition), but also that introducing
50% of overhead is sufficient to provide resiliency (as opposed
to needing a 200% overhead for TMR). As the granularity of an
error is that of an entire residue, RRNS is capable of potentially
correcting multi-bit errors as well, for free.

The remainder of this paper describes real number repre-
sentation in such an RRNS framework.

3 PROPOSITION

A reliable real number representation system desires the fol-
lowing properties:

1) Range. Range that is a superset of the 32 bit IEEE
754 representation (hereafter referred to as float). This
includes special values: subnormal, ±0, ±∞ and NaN.

2) Precision. Precision that is comparable to that of float.
3) Redundancy. Amenable to RRNS error check (compute

or storage).
4) Fast. Minimal arithmetic complexity for performance

and energy efficiency.

The proposed representation is designed with the above
goals in mind.

Goals Range and Precision can be naively realized using
the same representation as that of float. However, floating
point arithmetic procedures involve dividing the mantissa by
the radix during the normalization processes. For float, this
radix is 2, and dividing by 2 is a trivial bit shift. However,
for Redundancy, we require the mantissa to be represented in
RRNS form, in which case, such down scaling (divide by 2) is
generally expensive. The only form of ’division’ that is efficient
in RRNS is when the dividend is one of the moduli themselves
[11]. This requires changing the radix to one of the RRNS
moduli, which is typically greater than 2.

Intuitively, we see a trade-off between the goals Fast and
Precision, given that we must achieve Redundancy. Before quan-
tifying the impact of changing the radix, we observe Lemma
1.

Observation 1. Given two radices r1, r2 ∈ N, 2 ≤ r1 < r2, for
every x ∈ R that can be represented as m1r

e1
1 , where m1 ∈ R,

e1 ∈ Z, 1 ≤ m1 < r1, x can also be represented as m2r
e2
2 , where

m2 ∈ R, e2 ∈ Z, 1 ≤ m2 < r2.
[m, r, e are mantissa, radix and exponent respectively, in scientific

notation parlance.]

Lemma 1. Assume definitions in Observation 1. Then, m2 and e2
can be computed by the following procedure:

e2 =

{
de1αe if |xr−de1αe2 | ≥ 1

de1αe − 1 if |xr−de1αe2 | < 1

m2 = xr−e22

where, α = logr2r1

and, dfe = ceiling(f)

Table 2: Fixed point mantissa representation and dynamic range
upon changing radix.

Radix ns nf Positive Range
2 (float) 0 23 [1.4013E-45, 3.40282E+38]

194 8 23 [6.5057E-296, 7.1097E+290]
239 8 23 [2.5014E-307, 2.2781E+302]
509 9 22 (~0, ~INF)

Proof.

x = m1r
e1
1 = m2r

e2
2

=⇒ e2 = logr2
m1

m2
+ e1logr2r1

∵ m1 ∈ [1, r1)

andm2 ∈ [1, r2)

and r2 > r1

∴ logr2
m1

m2
∈ (−logr2r2, logr2r2)

=⇒ |logr2
m1

m2
| < 1

∵ e2 ∈ Z and |logr2 m1
m2
| < 1, the proof is complete.

Note that Observation 1 assumes that m1 and m2 can as-
sume any real value in the range [1, r1) and [1, r2) respectively.
This implies that we have an unlimited supply of bits following
a decimal point. In a physical representation, the mantissa must
obviously be truncated at the cost of Precision.

The Redundancy property unique to RRNS is that the ’error
codes’ are preserved under arithmetic operations. For float-
ing point, these operations operate on the mantissa and the
exponent in an independent manner. It is therefore logical to
separate out the representation/encoding of the mantissa from
the exponent to avoid unnecessary (complex and expensive)
extraction from a combined format.

The mantissa m is typically represented as a fixed point
number ms.mf , where ms and mf have ns and nf bits and
represent the significant and fractional portions of the mantissa
respectively. In float, ms is either 0 (subnormal) or 1 (recall from
Observation 1 that 1 ≤ m < radix); which implies that ms is
implicit and therefore ns is 0 for float.

For our reference RRNS system, the representable range is
31 bits and since the mantissa is encoded distinctly from the
exponent, we have ns + nf = 31. Recall that a requirement to
achieve the goal Fast is that the radix must be one of the moduli
of the RRNS system. As the moduli in our reference system are
greater than 2, we observe an increased dynamic Range when
compared to float. Table 2 quantifies these for a few moduli.
(Note, the minimum values are obtained using the subnormal
representation.)

In order to understand the impact that changing the radix
has on Precision, we first present a few established notions [15]
of precision itself.

3.0.0.1 Maximum Absolute Representation Error:
MARE is defined as half the distance between two consecutive

104

... 3

represented numbers for a given exponent e. For clarity, we
denote this distance by the term gap, which is equal to ulp× re,
where ulp, r and e are unit of least precision, radix and
exponent respectively.

3.0.0.2 Maximum Relative Representation Error: As
MARE is not constant across the entire range of representable
numbers, MRRE is defined to normalize out the varying expo-
nent term, and is equal to 1

2
ulp× r.

3.0.0.3 Average Relative Representation Error: MRRE
is typically considered a good measure if operands are uni-
formly distributed across the entire range. Upon applying a
heuristic density function for the mantissa and computing an
average, ARRE is defined as equal to r−1

ln r
× ulp

4
.

A straightforward, intuitive observation from these three
figures of merit is that decreasing the ulp decreases error,
thereby rightly indicating increased precision. However, ulp is
dictated solely by the number of bits in the fractional part of the
mantissa, i.e., nf . For our reference system, this is rather fixed
(cf. Table 2).

Having a more or less constant ulp leaves us with exam-
ining the impact of changing r alone. If we must take into
consideration the entire range representable, it can be argued
that a higher range would result in a lower precision. Imagine
the following analogy: the clarity (~precision) of a picture
would deteriorate if the screen size (~r) is increased without
changing the screen resolution (~ulp). This is corroborated by
the equations for MRRE and ARRE, where the error grows with
r and r−1

ln r
respectively. It is therefore wise to select an r that is

as small as possible. For the smallest modulus in our reference
system, 194, the MRRE and ARRE increase by a factor of 97 and
25 respectively, when compared to float.

However, it is unfair to expect to maintain the precision of
float across a much higher range, without increasing nf . MRRE
as well as ARRE are good figures of merit only when we are
interested in representing the entirety of the increased repre-
sentable range accurately. For an apples-to-apples comparison
with float, we restrict our forthcoming Precision analysis to the
representable range of float.

Therefore, for a more thorough understanding of the impact
increasing the radix (to 194) has on Precision, we examine gap (cf.
paragraph 3.0.0.1 above) at each exponent that is representable
by float. In Figure 1, for each such exponent x on the X-axis,
Lemma 1 is used to compute the exponent x

′
that would result

upon increasing the radix from 2 (float) to 194 (smallest RRNS
modulus in reference system). The gap is computed for each
x

′
(with radix 194) and each x (with radix 2), and their ratio

is plotted on the Y-axis. A ratio smaller than 1 indicates that
increasing the radix results in higher precision, and a ratio
larger than 1 indicates that increasing the radix diminishes
precision. We observe that the loss in precision is at most off
by a factor of 200. In comparison, the loss in precision due to
transitioning from double to float is of the order of 108 for the
same (float) range.

Figure 1: Ratio of gap (cf. paragraph 3.0.0.1) with radix 194 to
that with radix 2 (float) over a range of exponents spanning that
of float. A lower gap indicates higher precision. In comparison,
the gap ratio of float to double is of the order of 108.

We conclude that enforcing the goals Redundancy and Fast
with a budget constrained by the reference RRNS system results
in a Precision that is comparable to that of float, over a similar
Range.

The representation of sign for mantissa and exponent de-
pends on two factors: (1) Floating point arithmetic requires
explicit prior knowledge of the signs of the operands for effi-
cient operation, (2) The CREEPY representation must represent
special values that are also represented by float: subnormal,
±0, ±∞ and NaN. The upshot of these two factors is that the
mantissa is in explicit sign-magnitude format (where the sign
bit and magnitude bits have distinct representations) and that
the exponent is in implicit signed format.

Implications on Microarchitecture

We now discuss further details of the representation, and its
impact on the microarchitecture of an RRNS computer such as
[3].

Recall that operations pertaining to each RRNS modulus
are handled by a subcore [3]. For the reference RRNS system
considered in this paper, there are 6 subcores, one for each mod-
ulus. The sign bit is required by each RRNS subcore, and hence
must be replicated across them. Similar to a control signal, TMR
is employed for the sign bit and is placed within the register file,
with the check being done prior to being read and replicated by
the subcores. An incorrect sign bit is analogous to an incorrect
opcode as far as floating point arithmetic is concerned.

Recall that the mantissa is represented distinctly from the
exponent; this now implies that the magnitude of the mantissa
has the entire range of RNS numbers to itself. Therefore, 49
RRNS bits are used to represent the magnitude of the mantissa.
Recall from Table 2, the mantissa is in a fixed point form, with
the point location implicit.

Finally, the exponent also has the entire range of RNS
numbers (32bits) to itself, however, given the range/precision
analysis and the representability of special values, it is more
than sufficient to represent 8 bits’ worth of non-redundant
exponent, i.e., same as float. There are two options to protect
these 8 bits:

1) A smaller RRNS system whose range is of the order of
28 (rather than 231). The implicit signed representation
would then be of the form of excess- M

′

2
, where M

′
is

the range of the smaller RRNS system. However, this

105

... 4

requires an additional set of RRNS check hardware as
well as an additional set of subcores/adders that are
designed for the smaller RRNS system.

2) Perform replication and TMR in a manner identical to
that of the mantissa sign bit.

In summary, an RRNS floating point register would logically
contain 3 (mantissa sign, TMR) + 24 (exponent, assuming TMR)
+ 49 (mantissa magnitude in RRNS) = 76 bits. A smaller storage
footprint can be achieved by employing a smaller RRNS system
to represent the exponent, as discussed above. Further microar-
chitectural optimizations and more compact representations are
plausible, but are out of scope of this paper.

Modification to Floating Point arithmetic

In this subsection, we highlight changes to the fundamental
algorithms for addition and multiplication.

Addition

The baseline algorithm for addition of two real numbers in-
volves three stages:

1) Denormalize. Scale the mantissa of one of the numbers
such that exponents of both numbers match.

2) Add. Add the two mantissas.
3) Renormalize. Scale the exponent of the result such that

the mantissa is of normalized form, as noted by Obser-
vation 1.

With the proposed RRNS real number system, we note two
changes:

• Denormalize / Renormalize: Scaling is now done by 194
(the smallest RRNS modulus) rather than by 2. While
up-scaling is a simple matter of RRNS multiplication,
down-scaling requires a special algorithm, the cost of
which is 3 subtractions, 2 multiplications and 3 table
lookups [11].

• Add. Regular RRNS addition can be employed.

Multiplication

The baseline algorithm for multiplying two real numbers is less
involved than addition. The mantissas can be multiplied, the
exponents can be added and a renormalization can be done on
the final result.

Upon shifting to RRNS, we note the following:

• Exponent addition is rather trivial, the exact algorithm
depends upon the representation of the exponent in the
microarchitecture (cf. Section 3).

• Renormalization is as discussed for the case of addition
above.

• Mantissa multiplication is that of two fixed point num-
bers, meaning that additional intermediate bits are nec-
essary to preserve precision. However, with RRNS, this
is non-trivial. Therefore, we suggest first scaling the
mantissas to fractions, and then performing fractional
multiplication [11] before scaling back.

It can be seen that function units performing arithmetic
operations on RRNS real numbers have a logically increased
(sub)pipeline depth, meaning that high performance scientific
applications could benefit from increased throughput, albeit at
an increased pipeline fill latency.

4 RELATED WORK AND CONCLUSION

Prior work in the Digital Signal Processors (DSP) domain
[5], [6], [10] had neither the redundant aspect of RRNS, nor
did they have the need to handle real numbers (fixed point
representation is deemed sufficient for DSPs).

There have been proposals to represent floating point num-
bers in RNS [4], [13], [14]. However, these place restrictions
on the RNS bases rendering them in-extensible for purposes of
RRNS. The closest work that achieves reliable real number han-
dling is the classic RRNS paper [8], [11], [12]. However, as their
work predates IEEE float, their solution lacks in completeness
from the point of view of today’s scientific community. It must
be noted, however, that our proposition for real RRNS numbers
leverages their error correction, down scaling by RNS modulus,
and fractional multiplication algorithms.

In this paper, we have proposed a real RRNS number rep-
resentation and associated algorithms/microarchitecture exten-
sions to an integer RRNS computer [3] that augment reliability
while remaining comparable to float w.r.t. range, precision and
performance.

REFERENCES

[1] D. E. Nikonov and I. A. Young, ”Overview of Beyond-CMOS
Devices and a Uniform Methodology for Their Benchmarking,” in
Proceedings of the IEEE, vol. 101, no. 12, pp. 2498-2533, Dec. 2013.

[2] M. Adrian, The end of Dennard scaling, 2013.
[3] B. Deng, S. Srikanth, E. R. Hein, P. G. Rabbat, T. M. Conte, E.

DeBenedictis, J. Cook, Computationally-Redundant Energy-Efficient
Processing for Yall (CREEPY), to appear in the IEEE International
Conference on Rebooting Computing 2016.

[4] J. S. Chiang, M. Lu, Floating-point numbers in residue number systems,
Computers and Mathematics with Applications,22, no. 10, 127-140,
1991.

[5] R. Chokshi , K. S. Berezowski , A. Shrivastava , S. J. Piestrak,
Exploiting residue number system for power-efficient digital signal pro-
cessing in embedded processors, Proceedings of the 2009 international
conference on Compilers, architecture, and synthesis for embedded
systems, October 11-16, 2009, Grenoble, France

[6] E. D. Claudio, F. Piazza and G. Orlandi, Fast Combinatorial RNS
Processors for DSP Applications, IEEE Trans. Computers, vol. 44, no.
5, pp. 624-633, May 1995.

[7] H. L. Garner, The Residue Number System, IRE Transactions on
Electronic Computers, pp. 140-147, June 1959.

[8] C. W. Hastings, Automatic detection and correction of errors in digital
computers using residue arithmetic, in Proc. 1966 IEEE Region Six
Annu. Conf, pp. 429-464.

[9] R. E. Lyons, W. Vanderkulk. The use of triple-modular redundancy to
improve computer reliability, IBM Journal of Research and Develop-
ment 6.2 (1962): 200-209.

[10] J. Ramirez, RNS-enabled digital signal processor design, Electron.
Lett., vol. 38, no. 6, pp. 266-268, 2002

[11] R. W. Watson, Error detection and correction and other residue interact-
ing operations in a residue redundant number system, Univ. California,
Berkeley, 1965.

[12] R. W. Watson and C. W. Hastings, Self-checked computation using
residue arithmetic, Proc. IEEE, vol. 54, pp. 1920-1931, Dec. 1966.

[13] J. O. Tuazon, Residue number system in computer arithmetic, Iowa
State university, 1969.

[14] R. Dhanabal, V. Barathi, S. K. Sahoo, N. R. Samhitha, N. A.
Cherian, P. M. Jacob, Implementation of floating point MAC using
residue number system, Optimization, Reliabilty, and Information
Technology (ICROIT), 2014 International Conference on. IEEE, 2014.

[15] I. Koren. Computer arithmetic algorithms, Universities Press, 2002.

106

DISTRIBUTION:

1 MS 1082 Patrick Chu, 05265
1 MS 0359 Greg C. Frye-Mason, 01171

1 MS 1318 Robert J. Hoekstra, 1422
1 MS 1322 John B. Aidun, 1425
1 MS 0359 D. Chavez, LDRD Office, 1911
1 MS 0899 Technical Library, 9536 (electronic copy)

107

108

v1.40

109

110

